Show simple item record

contributor authorBaum, Bryan A.
contributor authorTovinkere, Vasanth
contributor authorTitlow, Jay
contributor authorWelch, Ronald M.
date accessioned2017-06-09T14:06:27Z
date available2017-06-09T14:06:27Z
date copyright1997/11/01
date issued1997
identifier issn0894-8763
identifier otherams-12554.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4147906
description abstractA fuzzy logic classification (FLC) methodology is proposed to achieve the two goals of this paper: 1) to discriminate between clear sky and clouds in a 32 ? 32 pixel array, or sample, of 1.1-km Advanced Very High Resolution Radiometer (AVHRR) data, and 2) if clouds are present, to discriminate between single-layered and multilayered clouds within the sample. To achieve these goals, eight FLC modules are derived that are based broadly on airmass type and surface type (land or water): equatorial over land, marine tropical over land, marine tropical/equatorial over water, continental tropical over land, marine polar over land, marine polar over water, continental polar over land, and continental polar/arctic over water. Derivation of airmass type is performed using gridded analyses provided by the National Centers for Environmental Prediction. The training and testing data used by the FLC are collected from more than 150 daytime AVHRR local area coverage scenes recorded between 1991 and 1994 over all seasons and over all continents and oceans. A total of 190 textural and spectral features are computed from the AVHRR data. A forward feature selection method is implemented to reduce the number of features used to discriminate between classes in each FLC module. The number of features selected ranges from 13 (marine tropical over land) to 24 (marine tropical/equatorial over water). An estimate of the classifier accuracy is determined using the hold-one-out method in which the classifier is trained with all but one of the data samples; the classifier is applied subsequently to the remaining sample. The overall accuracies of the eight classification modules are calculated by dividing the number of correctly classified samples by the total number of manually labeled samples of clear-sky and single-layer clouds. Individual module classification accuracies are as follows: equatorial over land (86.2%), marine tropical over land (85.6%), marine tropical/equatorial over water (88.6%), continental tropical over land (87.4%), marine polar over land (86.8%), marine polar over water (84.8%), continental polar over land (91.1%), and continental polar/arctic over water (89.8%). Single-level cloud samples misclassified as multilayered clouds range between 0.5% (continental polar over land) and 3.4% (marine polar over land) for the eight airmass modules. Classification accuracies for a set of labeled multilayered cloud samples range between 64% and 81% for six of the eight airmass modules (excluded are the continental polar over land and continental polar/arctic over water modules, for which multilayered cloud samples are difficult to find). The results indicate that the FLC has an encouraging ability to distinguish between single-level and multilayered clouds.
publisherAmerican Meteorological Society
titleAutomated Cloud Classification of Global AVHRR Data Using a Fuzzy Logic Approach
typeJournal Paper
journal volume36
journal issue11
journal titleJournal of Applied Meteorology
identifier doi10.1175/1520-0450(1997)036<1519:ACCOGA>2.0.CO;2
journal fristpage1519
journal lastpage1540
treeJournal of Applied Meteorology:;1997:;volume( 036 ):;issue: 011
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record