YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of Traditional and Neural Classifiers for Pavement‐Crack Detection

    Source: Journal of Transportation Engineering, Part A: Systems:;1994:;Volume ( 120 ):;issue: 004
    Author:
    Mohamed S. Kaseko
    ,
    Zhen‐Ping Lo
    ,
    Stephen G. Ritchie
    DOI: 10.1061/(ASCE)0733-947X(1994)120:4(552)
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents a comparative evaluation of traditional and neural‐network classifiers to detect cracks in video images of asphalt‐concrete pavement surfaces. The traditional classifiers used are the Bayes classifier and the
    • Download: (1.581Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of Traditional and Neural Classifiers for Pavement‐Crack Detection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/36792
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorMohamed S. Kaseko
    contributor authorZhen‐Ping Lo
    contributor authorStephen G. Ritchie
    date accessioned2017-05-08T21:03:04Z
    date available2017-05-08T21:03:04Z
    date copyrightJuly 1994
    date issued1994
    identifier other%28asce%290733-947x%281994%29120%3A4%28552%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/36792
    description abstractThis paper presents a comparative evaluation of traditional and neural‐network classifiers to detect cracks in video images of asphalt‐concrete pavement surfaces. The traditional classifiers used are the Bayes classifier and the
    publisherAmerican Society of Civil Engineers
    titleComparison of Traditional and Neural Classifiers for Pavement‐Crack Detection
    typeJournal Paper
    journal volume120
    journal issue4
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/(ASCE)0733-947X(1994)120:4(552)
    treeJournal of Transportation Engineering, Part A: Systems:;1994:;Volume ( 120 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian