Show simple item record

contributor authorMohamed S. Kaseko
contributor authorZhen‐Ping Lo
contributor authorStephen G. Ritchie
date accessioned2017-05-08T21:03:04Z
date available2017-05-08T21:03:04Z
date copyrightJuly 1994
date issued1994
identifier other%28asce%290733-947x%281994%29120%3A4%28552%29.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/36792
description abstractThis paper presents a comparative evaluation of traditional and neural‐network classifiers to detect cracks in video images of asphalt‐concrete pavement surfaces. The traditional classifiers used are the Bayes classifier and the
publisherAmerican Society of Civil Engineers
titleComparison of Traditional and Neural Classifiers for Pavement‐Crack Detection
typeJournal Paper
journal volume120
journal issue4
journal titleJournal of Transportation Engineering, Part A: Systems
identifier doi10.1061/(ASCE)0733-947X(1994)120:4(552)
treeJournal of Transportation Engineering, Part A: Systems:;1994:;Volume ( 120 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record