Show simple item record

contributor authorL. H. Koopmans
contributor authorJ. T. P. Yao
contributor authorC. Qualls
date accessioned2017-05-09T01:36:03Z
date available2017-05-09T01:36:03Z
date copyrightMarch, 1973
date issued1973
identifier issn0021-8936
identifier otherJAMCAV-25974#181_1.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/163571
description abstractThis paper establishes a new upper bound on the failure probability of linear structures excited by an earthquake. From Drenick’s inequality max|y(t)| ≤ MN, where N2 = ∫ h2 , M2 , = ∫ x2 , x(t) is a nonstationary Gaussian stochastic process representing the excitation of the earthquake, and y(t) is the stochastic response of the structure with impulse response function h(τ), we obtain an exponential bound computable in terms of the mean and variance of the energy M2 . A numerical example is given.
publisherThe American Society of Mechanical Engineers (ASME)
titleAn Upper Bound on the Failure Probability for Linear Structures
typeJournal Paper
journal volume40
journal issue1
journal titleJournal of Applied Mechanics
identifier doi10.1115/1.3422921
journal fristpage181
journal lastpage185
identifier eissn1528-9036
keywordsFailure
keywordsProbability
keywordsEarthquakes
keywordsImpulse (Physics) AND Stochastic processes
treeJournal of Applied Mechanics:;1973:;volume( 040 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record