YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Casing Treatment for Desensitization of Compressor Performance and Stability to Tip Clearance

    Source: Journal of Turbomachinery:;2016:;volume( 138 ):;issue: 012::page 121008
    Author:
    Cevik, Mert
    ,
    Duc Vo, Huu
    ,
    Yu, Hong
    DOI: 10.1115/1.4033420
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents the development of a novel casing treatment to reduce compressor performance and stall margin sensitivities to tip clearance increase. A linked research project on blade design strategies for desensitization had discovered two flow features that reduce sensitivity to tip clearance, namely increased incoming meridional momentum in the rotor tip region and reduction/elimination of double tip leakage flow. Double tip leakage flow is the flow that exits one tip clearance and enters the tip clearance of the circumferentially adjacent blade instead of convecting downstream out of the blade passage. A new and practical casing treatment was developed and analyzed through Reynoldsaveraged Navier–Stokes (RANS) computational fluid dynamics (CFD) simulations to decrease double tip leakage and reduce or even eliminate performance and stall margin sensitivity to tip clearance size. The casing treatment design consists of sawtoothshaped circumferential indentations placed on the shroud over the rotor with a depth on the order of the tip clearance size. A detailed analysis of the flow field allowed for the elucidation of the flow mechanism associated with this casing treatment. A computational parametric study gave preliminary design rules for minimizing both performance/stall margin sensitivity to tip clearance and nominal performance loss. An improved casing indentation design was produced for which CFD simulations showed a complete desensitization of pressure ratio and stall margin while reducing efficiency sensitivity significantly for the tip clearance range studied with only a very small penalty in nominal pressure ratio. Further simulations showed that this casing treatment can be combined with desensitizing blade design strategies to further reduce tip sensitivity and reduce/eliminate/reverse nominal performance penalty. Lastly, preliminary CFD simulations on an axial compressor stage indicate that this shallow indentations' casing treatment strategy remains effective in a stage environment.
    • Download: (2.332Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Casing Treatment for Desensitization of Compressor Performance and Stability to Tip Clearance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/162839
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorCevik, Mert
    contributor authorDuc Vo, Huu
    contributor authorYu, Hong
    date accessioned2017-05-09T01:34:28Z
    date available2017-05-09T01:34:28Z
    date issued2016
    identifier issn0889-504X
    identifier otherfe_138_11_111302.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/162839
    description abstractThis paper presents the development of a novel casing treatment to reduce compressor performance and stall margin sensitivities to tip clearance increase. A linked research project on blade design strategies for desensitization had discovered two flow features that reduce sensitivity to tip clearance, namely increased incoming meridional momentum in the rotor tip region and reduction/elimination of double tip leakage flow. Double tip leakage flow is the flow that exits one tip clearance and enters the tip clearance of the circumferentially adjacent blade instead of convecting downstream out of the blade passage. A new and practical casing treatment was developed and analyzed through Reynoldsaveraged Navier–Stokes (RANS) computational fluid dynamics (CFD) simulations to decrease double tip leakage and reduce or even eliminate performance and stall margin sensitivity to tip clearance size. The casing treatment design consists of sawtoothshaped circumferential indentations placed on the shroud over the rotor with a depth on the order of the tip clearance size. A detailed analysis of the flow field allowed for the elucidation of the flow mechanism associated with this casing treatment. A computational parametric study gave preliminary design rules for minimizing both performance/stall margin sensitivity to tip clearance and nominal performance loss. An improved casing indentation design was produced for which CFD simulations showed a complete desensitization of pressure ratio and stall margin while reducing efficiency sensitivity significantly for the tip clearance range studied with only a very small penalty in nominal pressure ratio. Further simulations showed that this casing treatment can be combined with desensitizing blade design strategies to further reduce tip sensitivity and reduce/eliminate/reverse nominal performance penalty. Lastly, preliminary CFD simulations on an axial compressor stage indicate that this shallow indentations' casing treatment strategy remains effective in a stage environment.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCasing Treatment for Desensitization of Compressor Performance and Stability to Tip Clearance
    typeJournal Paper
    journal volume138
    journal issue12
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4033420
    journal fristpage121008
    journal lastpage121008
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2016:;volume( 138 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian