YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Combined Effects of an Upstream Ramp and Swirling Coolant Flow on Film Cooling Characteristics

    Source: Journal of Turbomachinery:;2016:;volume( 138 ):;issue: 011::page 111008
    Author:
    Yang, Wenshuo
    ,
    Pu, Jian
    ,
    Wang, Jianhua
    DOI: 10.1115/1.4033292
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents an experimental investigation on the performances of a new film cooling structure design, in which a ramp is placed upstream of a cylindrical film hole and a cylindrical cavity with two diagonal impingement holes is set at the inlet of the film hole to generate a swirling coolant flow entering the film hole. The experiments are carried out by two undisturbed measurement techniques, planar laser induced fluorescence (PLIF) and timeresolved particle image velocimetry (TRPIV) in a water tunnel. The effects of the upstream ramp angle, blowing ratio (BR), and coolant impingement angle on the film cooling performances of a flat plate are studied at three ramp angles (0 deg, 15 deg, and 25 deg), two coolant swirling directions (clockwise and counterclockwise), two impingement angles (15 deg and 30 deg), and three BRs (0.6, 1.0, and 1.4). The experimental results show that at high BRs, the combination structures of the upstream ramp with the swirling coolant flow generated by the impingement angles can significantly improve film cooling performances; the best combination is at a 30 deg impingement angle and a 25 deg ramp angle. This can be explained by the fact that the swirling flow is significantly pressed on to the wall by means of the upstream ramp. Using the analogous analysis of heat and mass transfer, the adiabatic film effectiveness averaged over a cross section is obtained; the analysis indicates that at high BRs, the combined effect of a ramp with a large angle of 25 deg with 30 deg impingement angle can increase the film effectiveness up to 30% when compared to the test case without a ramp at the exit of the film hole. The images captured by PLIF exhibit an interesting phenomenon, i.e., the swirling of the coolant in different directions can influence the counter vortex pair (CVP) in rotating layers, and the coolant swirling in a clockwise direction enhances the right mixing of the CVP with coolant ejection, whereas the coolant swirling in a counterclockwise direction enhances the leftmixing of the CVP with coolant ejection.
    • Download: (1.419Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Combined Effects of an Upstream Ramp and Swirling Coolant Flow on Film Cooling Characteristics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/162826
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorYang, Wenshuo
    contributor authorPu, Jian
    contributor authorWang, Jianhua
    date accessioned2017-05-09T01:34:25Z
    date available2017-05-09T01:34:25Z
    date issued2016
    identifier issn0889-504X
    identifier otherfe_138_08_084502.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/162826
    description abstractThis paper presents an experimental investigation on the performances of a new film cooling structure design, in which a ramp is placed upstream of a cylindrical film hole and a cylindrical cavity with two diagonal impingement holes is set at the inlet of the film hole to generate a swirling coolant flow entering the film hole. The experiments are carried out by two undisturbed measurement techniques, planar laser induced fluorescence (PLIF) and timeresolved particle image velocimetry (TRPIV) in a water tunnel. The effects of the upstream ramp angle, blowing ratio (BR), and coolant impingement angle on the film cooling performances of a flat plate are studied at three ramp angles (0 deg, 15 deg, and 25 deg), two coolant swirling directions (clockwise and counterclockwise), two impingement angles (15 deg and 30 deg), and three BRs (0.6, 1.0, and 1.4). The experimental results show that at high BRs, the combination structures of the upstream ramp with the swirling coolant flow generated by the impingement angles can significantly improve film cooling performances; the best combination is at a 30 deg impingement angle and a 25 deg ramp angle. This can be explained by the fact that the swirling flow is significantly pressed on to the wall by means of the upstream ramp. Using the analogous analysis of heat and mass transfer, the adiabatic film effectiveness averaged over a cross section is obtained; the analysis indicates that at high BRs, the combined effect of a ramp with a large angle of 25 deg with 30 deg impingement angle can increase the film effectiveness up to 30% when compared to the test case without a ramp at the exit of the film hole. The images captured by PLIF exhibit an interesting phenomenon, i.e., the swirling of the coolant in different directions can influence the counter vortex pair (CVP) in rotating layers, and the coolant swirling in a clockwise direction enhances the right mixing of the CVP with coolant ejection, whereas the coolant swirling in a counterclockwise direction enhances the leftmixing of the CVP with coolant ejection.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Combined Effects of an Upstream Ramp and Swirling Coolant Flow on Film Cooling Characteristics
    typeJournal Paper
    journal volume138
    journal issue11
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4033292
    journal fristpage111008
    journal lastpage111008
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2016:;volume( 138 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian