YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure Sensitive Paint

    Source: Journal of Turbomachinery:;2016:;volume( 138 ):;issue: 008::page 81007
    Author:
    Natsui, Greg
    ,
    Little, Zachary
    ,
    Kapat, Jayanta S.
    ,
    Dees, Jason E.
    ,
    Laskowski, Gregory
    DOI: 10.1115/1.4032674
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Pressuresensitive paint (PSP) can be a powerful tool in measuring the adiabatic film cooling effectiveness. There are two distinct sources of error for this measurement technique: the ability to experimentally obtain the data and the validity of the heat and mass transfer analogy for the problem being studied. This paper will assess the experimental aspect of this PSP measurement specifically for film cooling applications. Experiments are conducted in an effort to quantifiably bound expected errors associated with temperature nonuniformities in testing and photodegradation effects. Results show that if careful experimental procedures are put in place, both of these effects can be maintained to have less than 0.022 impact on effectiveness. Through accurate semi in situ calibration down to 4% atmospheric pressure, the nearhole distribution of effectiveness is measured with high accuracy. PSP calibrations are performed for multiple coupons, over multiple days. In addition, to reach a partial pressure of zero the calibration vessel was purged of all air by flowing CO2. The primary contribution of this paper lies in the uncertainty analysis performed on the PSP measurement technique. A thorough uncertainty analysis is conducted and described, in order to completely understand the presented measurements and any shortcomings of the PSP technique. This quantification results in larger, albeit more realistic, values of uncertainty and helps provide a better understanding of film cooling effectiveness measurements taken using the PSP technique. The presented uncertainty analysis takes into account all random error sources associated with sampling and calibration, from intensities to effectiveness. Adiabatic film cooling effectiveness measurements are obtained for a single row of film cooling holes inclined at 20 deg, with CO2 used as coolant. Data are obtained for six blowing ratios. Maps of uncertainty corresponding to each effectiveness profile are available for each test case. These maps show that the uncertainty varies spatially over the test surface and high effectiveness corresponds to low uncertainty. The noise floors can be as high as 0.04 at effectiveness levels of 0. Daytoday repeatability is presented for each blowing ratio and shows that laterally averaged effectiveness data are repeatable within 0.02 effectiveness.
    • Download: (3.551Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure Sensitive Paint

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/162793
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorNatsui, Greg
    contributor authorLittle, Zachary
    contributor authorKapat, Jayanta S.
    contributor authorDees, Jason E.
    contributor authorLaskowski, Gregory
    date accessioned2017-05-09T01:34:15Z
    date available2017-05-09T01:34:15Z
    date issued2016
    identifier issn0889-504X
    identifier otherturbo_138_08_081007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/162793
    description abstractPressuresensitive paint (PSP) can be a powerful tool in measuring the adiabatic film cooling effectiveness. There are two distinct sources of error for this measurement technique: the ability to experimentally obtain the data and the validity of the heat and mass transfer analogy for the problem being studied. This paper will assess the experimental aspect of this PSP measurement specifically for film cooling applications. Experiments are conducted in an effort to quantifiably bound expected errors associated with temperature nonuniformities in testing and photodegradation effects. Results show that if careful experimental procedures are put in place, both of these effects can be maintained to have less than 0.022 impact on effectiveness. Through accurate semi in situ calibration down to 4% atmospheric pressure, the nearhole distribution of effectiveness is measured with high accuracy. PSP calibrations are performed for multiple coupons, over multiple days. In addition, to reach a partial pressure of zero the calibration vessel was purged of all air by flowing CO2. The primary contribution of this paper lies in the uncertainty analysis performed on the PSP measurement technique. A thorough uncertainty analysis is conducted and described, in order to completely understand the presented measurements and any shortcomings of the PSP technique. This quantification results in larger, albeit more realistic, values of uncertainty and helps provide a better understanding of film cooling effectiveness measurements taken using the PSP technique. The presented uncertainty analysis takes into account all random error sources associated with sampling and calibration, from intensities to effectiveness. Adiabatic film cooling effectiveness measurements are obtained for a single row of film cooling holes inclined at 20 deg, with CO2 used as coolant. Data are obtained for six blowing ratios. Maps of uncertainty corresponding to each effectiveness profile are available for each test case. These maps show that the uncertainty varies spatially over the test surface and high effectiveness corresponds to low uncertainty. The noise floors can be as high as 0.04 at effectiveness levels of 0. Daytoday repeatability is presented for each blowing ratio and shows that laterally averaged effectiveness data are repeatable within 0.02 effectiveness.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure Sensitive Paint
    typeJournal Paper
    journal volume138
    journal issue8
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4032674
    journal fristpage81007
    journal lastpage81007
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2016:;volume( 138 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian