YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Turbine Blade Tip Film Cooling With Blade Rotation—Part I: Tip and Pressure Side Coolant Injection

    Source: Journal of Turbomachinery:;2016:;volume( 138 ):;issue: 009::page 91002
    Author:
    Tamunobere, Onieluan
    ,
    Acharya, Sumanta
    DOI: 10.1115/1.4032672
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An experimental study of film cooling is conducted on the tip of a turbine blade with a blade rotation speed of 1200 rpm. The coolant is injected from the blade tip and pressure side (PS) holes, and the effect of the blowing ratio on the heat transfer coefficient and film cooling effectiveness of the blade tip is investigated. The blade has a tip clearance of 1.7% of the blade span and consists of a cut back squealer rim, two cylindrical tip holes, and six shaped PS holes. The stator–rotor–stator test section is housed in a closed loop wind tunnel that allows for the performance of transient heat transfer tests. Measurements of the heat transfer coefficient and film cooling effectiveness are done on the blade tip using liquid crystal thermography. These measurements are reported for the no coolant case and for blowing ratios of 1.0, 1.5, 2.0, 3.0, and 4.0. The heat transfer result for the no coolant injection shows a region of high heat transfer on the blade tip near the blade leading edge region as the incident flow impinges on that region. This region of high heat transfer extends and stretches on the tip as more coolant is introduced through the tip holes at higher blowing ratios. The cooling results show that increasing the blowing ratio increases the film cooling effectiveness. The cooling effectiveness signatures indicate that the tip coolant is pushed toward the blade suction side thereby providing better coverage in that region. This shift in coolant flow toward the blade suction side, as opposed to the PS in stationary studies, can primarily be attributed to the effects of the blade relative motion.
    • Download: (2.091Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Turbine Blade Tip Film Cooling With Blade Rotation—Part I: Tip and Pressure Side Coolant Injection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/162791
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorTamunobere, Onieluan
    contributor authorAcharya, Sumanta
    date accessioned2017-05-09T01:34:15Z
    date available2017-05-09T01:34:15Z
    date issued2016
    identifier issn0889-504X
    identifier otherturbo_138_09_091002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/162791
    description abstractAn experimental study of film cooling is conducted on the tip of a turbine blade with a blade rotation speed of 1200 rpm. The coolant is injected from the blade tip and pressure side (PS) holes, and the effect of the blowing ratio on the heat transfer coefficient and film cooling effectiveness of the blade tip is investigated. The blade has a tip clearance of 1.7% of the blade span and consists of a cut back squealer rim, two cylindrical tip holes, and six shaped PS holes. The stator–rotor–stator test section is housed in a closed loop wind tunnel that allows for the performance of transient heat transfer tests. Measurements of the heat transfer coefficient and film cooling effectiveness are done on the blade tip using liquid crystal thermography. These measurements are reported for the no coolant case and for blowing ratios of 1.0, 1.5, 2.0, 3.0, and 4.0. The heat transfer result for the no coolant injection shows a region of high heat transfer on the blade tip near the blade leading edge region as the incident flow impinges on that region. This region of high heat transfer extends and stretches on the tip as more coolant is introduced through the tip holes at higher blowing ratios. The cooling results show that increasing the blowing ratio increases the film cooling effectiveness. The cooling effectiveness signatures indicate that the tip coolant is pushed toward the blade suction side thereby providing better coverage in that region. This shift in coolant flow toward the blade suction side, as opposed to the PS in stationary studies, can primarily be attributed to the effects of the blade relative motion.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTurbine Blade Tip Film Cooling With Blade Rotation—Part I: Tip and Pressure Side Coolant Injection
    typeJournal Paper
    journal volume138
    journal issue9
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4032672
    journal fristpage91002
    journal lastpage91002
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2016:;volume( 138 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian