YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Truncation Design and Model Testing of a Deepwater FPSO Mooring System

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2016:;volume( 138 ):;issue: 002::page 21603
    Author:
    Wang, Hongwei
    ,
    Ma, Gang
    ,
    Sun, Liping
    ,
    Kang, Zhuang
    DOI: 10.1115/1.4032605
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Limitation of offshore basin dimensions is a great challenge for model tests of deepwater mooring system. The mooring system cannot be modeled entirely in the basin with a reasonable model scale. A classical solution is based on hybrid model tests for the truncated mooring system. An efficient truncation method is proposed in this paper taking advantage of the mechanical characteristics of catenary mooring system. Truncation procedures are presented both in vertical and horizontal directions. A turret moored floating production storage and offloading (FPSO) is analyzed, and its mooring system is truncated from the original 914 m water depth to 736 m and 460 m, respectively. Numerical simulations are performed based on catenary theory and lumped mass model to these three systems, including the original untruncated system and two truncated systems. The static characteristics and dynamic response are investigated, and the results are compared between the truncated and untruncated system, and good agreements are obtained, verifying the preliminary truncation design. Model tests are conducted to the three mooring system configurations in the deepwater basin of the Harbin Engineering University. The static and dynamic properties are found to be mostly consistent between the untruncated system and two truncated systems, except for some discrepancy in 460 m system. It indicates that the truncation design is successful when the truncation factor is large, while difference still exists when the truncation factor is small. Numerical reconstruction to the model test in 460 m and extrapolation to 914 m are also implemented. The results are found to be consistent with those in 914 m, verifying the robustness and necessity of the hybrid model testing, especially for the mooring system with large truncation.
    • Download: (7.045Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Truncation Design and Model Testing of a Deepwater FPSO Mooring System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/162269
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorWang, Hongwei
    contributor authorMa, Gang
    contributor authorSun, Liping
    contributor authorKang, Zhuang
    date accessioned2017-05-09T01:32:25Z
    date available2017-05-09T01:32:25Z
    date issued2016
    identifier issn0892-7219
    identifier otheromae_138_02_021603.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/162269
    description abstractLimitation of offshore basin dimensions is a great challenge for model tests of deepwater mooring system. The mooring system cannot be modeled entirely in the basin with a reasonable model scale. A classical solution is based on hybrid model tests for the truncated mooring system. An efficient truncation method is proposed in this paper taking advantage of the mechanical characteristics of catenary mooring system. Truncation procedures are presented both in vertical and horizontal directions. A turret moored floating production storage and offloading (FPSO) is analyzed, and its mooring system is truncated from the original 914 m water depth to 736 m and 460 m, respectively. Numerical simulations are performed based on catenary theory and lumped mass model to these three systems, including the original untruncated system and two truncated systems. The static characteristics and dynamic response are investigated, and the results are compared between the truncated and untruncated system, and good agreements are obtained, verifying the preliminary truncation design. Model tests are conducted to the three mooring system configurations in the deepwater basin of the Harbin Engineering University. The static and dynamic properties are found to be mostly consistent between the untruncated system and two truncated systems, except for some discrepancy in 460 m system. It indicates that the truncation design is successful when the truncation factor is large, while difference still exists when the truncation factor is small. Numerical reconstruction to the model test in 460 m and extrapolation to 914 m are also implemented. The results are found to be consistent with those in 914 m, verifying the robustness and necessity of the hybrid model testing, especially for the mooring system with large truncation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTruncation Design and Model Testing of a Deepwater FPSO Mooring System
    typeJournal Paper
    journal volume138
    journal issue2
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.4032605
    journal fristpage21603
    journal lastpage21603
    identifier eissn1528-896X
    treeJournal of Offshore Mechanics and Arctic Engineering:;2016:;volume( 138 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian