YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design and Fabrication of a Disposable Dental Handpiece for Clinical Use of a New Laser Based Therapy Monitoring System

    Source: Journal of Medical Devices:;2016:;volume( 010 ):;issue: 001::page 11005
    Author:
    Rugg, Amanda L.
    ,
    Nelson, Leonard Y.
    ,
    Timoshchuk, Mari
    ,
    Seibel, Eric J.
    DOI: 10.1115/1.4031800
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Dental caries, the breakdown of tooth enamel by bacteria infection that causes cavities in the enamel, is the most common chronic disease in individuals 6–19 years of age in the U.S. Optical detection of caries has been shown to be sensitive to the presence of bacteria and the resulting demineralization of enamel. The scanning fiber endoscope (SFE) is a miniature camera system that can detect early stages of caries by performing highquality imaging and laser fluorescence spectroscopy with 405 nm excitation. Because optical imaging of caries does not involve radiation risk, repeated imaging of the teeth is acceptable during treatment of the bacterial infection to monitor healing. A disposable handpiece was designed and fabricated to position the flexible fiber optic SFE probe for quantitative measurements. Plastic 3Dprinted handpiece prototypes were tested with the SFE and a fluorescence calibration standard to verify mechanical fit and absence of signal contamination. Design feedback was provided by pediatric dentists and staff engineers to guide iterations. The final design configuration was based on the need to image interproximal regions (contact surfaces between adjacent teeth), ergonomics, and probe safety. The final handpiece design: (1) is safe for both the patient and the probe, (2) allows easy SFE insertion and removal, (3) does not interfere with spectral measurements, (4) standardizes the SFE's positioning during imaging by maintaining a consistent distance from the target surface, and (5) is significantly less expensive to produce and use than purchasing sanitary endoscope sheaths. The device will be used to help determine if new medicinal therapies can arrest caries and repair early interproximal demineralization under the clinical monitoring program. Ultimately, we anticipate that this handpiece will help us move closer toward widespread implementation of a dental diagnostic laser system that is safer and more sensitive than conventional methods for early caries detection.
    • Download: (2.862Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design and Fabrication of a Disposable Dental Handpiece for Clinical Use of a New Laser Based Therapy Monitoring System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/161980
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorRugg, Amanda L.
    contributor authorNelson, Leonard Y.
    contributor authorTimoshchuk, Mari
    contributor authorSeibel, Eric J.
    date accessioned2017-05-09T01:31:40Z
    date available2017-05-09T01:31:40Z
    date issued2016
    identifier issn1932-6181
    identifier othermed_010_01_011005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/161980
    description abstractDental caries, the breakdown of tooth enamel by bacteria infection that causes cavities in the enamel, is the most common chronic disease in individuals 6–19 years of age in the U.S. Optical detection of caries has been shown to be sensitive to the presence of bacteria and the resulting demineralization of enamel. The scanning fiber endoscope (SFE) is a miniature camera system that can detect early stages of caries by performing highquality imaging and laser fluorescence spectroscopy with 405 nm excitation. Because optical imaging of caries does not involve radiation risk, repeated imaging of the teeth is acceptable during treatment of the bacterial infection to monitor healing. A disposable handpiece was designed and fabricated to position the flexible fiber optic SFE probe for quantitative measurements. Plastic 3Dprinted handpiece prototypes were tested with the SFE and a fluorescence calibration standard to verify mechanical fit and absence of signal contamination. Design feedback was provided by pediatric dentists and staff engineers to guide iterations. The final design configuration was based on the need to image interproximal regions (contact surfaces between adjacent teeth), ergonomics, and probe safety. The final handpiece design: (1) is safe for both the patient and the probe, (2) allows easy SFE insertion and removal, (3) does not interfere with spectral measurements, (4) standardizes the SFE's positioning during imaging by maintaining a consistent distance from the target surface, and (5) is significantly less expensive to produce and use than purchasing sanitary endoscope sheaths. The device will be used to help determine if new medicinal therapies can arrest caries and repair early interproximal demineralization under the clinical monitoring program. Ultimately, we anticipate that this handpiece will help us move closer toward widespread implementation of a dental diagnostic laser system that is safer and more sensitive than conventional methods for early caries detection.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign and Fabrication of a Disposable Dental Handpiece for Clinical Use of a New Laser Based Therapy Monitoring System
    typeJournal Paper
    journal volume10
    journal issue1
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.4031800
    journal fristpage11005
    journal lastpage11005
    identifier eissn1932-619X
    treeJournal of Medical Devices:;2016:;volume( 010 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian