contributor author | Zhao, Baoliang | |
contributor author | Nelson, Carl A. | |
date accessioned | 2017-05-09T01:31:34Z | |
date available | 2017-05-09T01:31:34Z | |
date issued | 2016 | |
identifier issn | 1942-4302 | |
identifier other | jmr_008_05_051015.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/161953 | |
description abstract | Robotassisted minimally invasive surgery (MIS) has gained popularity due to its high dexterity and reduced invasiveness to the patient; however, due to the loss of direct touch of the surgical site, surgeons may be prone to exert larger forces and cause tissue damage. To quantify tool–tissue interaction forces, researchers have tried to attach different kinds of sensors on the surgical tools. This sensor attachment generally makes the tools bulky and/or unduly expensive and may hinder the normal function of the tools; it is also unlikely that these sensors can survive harsh sterilization processes. This paper investigates an alternative method by estimating tool–tissue interaction forces using driving motors' current, and validates this sensorless force estimation method on a 3degreeoffreedom (DOF) robotic surgical grasper prototype. The results show that the performance of this method is acceptable with regard to latency and accuracy. With this tool–tissue interaction force estimation method, it is possible to implement force feedback on existing robotic surgical systems without any sensors. This may allow a haptic surgical robot which is compatible with existing sterilization methods and surgical procedures, so that the surgeon can obtain tool–tissue interaction forces in real time, thereby increasing surgical efficiency and safety. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Estimating Tool–Tissue Forces Using a 3 Degree of Freedom Robotic Surgical Tool | |
type | Journal Paper | |
journal volume | 8 | |
journal issue | 5 | |
journal title | Journal of Mechanisms and Robotics | |
identifier doi | 10.1115/1.4032591 | |
journal fristpage | 51015 | |
journal lastpage | 51015 | |
identifier eissn | 1942-4310 | |
tree | Journal of Mechanisms and Robotics:;2016:;volume( 008 ):;issue: 005 | |
contenttype | Fulltext | |