Show simple item record

contributor authorLoschak, Paul M.
contributor authorDegirmenci, Alperen
contributor authorTenzer, Yaroslav
contributor authorTschabrunn, Cory M.
contributor authorAnter, Elad
contributor authorHowe, Robert D.
date accessioned2017-05-09T01:31:28Z
date available2017-05-09T01:31:28Z
date issued2016
identifier issn1942-4302
identifier otherjmr_008_05_051016.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/161927
description abstractIn this paper, we present the design, fabrication, and testing of a robot for automatically positioning ultrasound (US) imaging catheters. Our system will point US catheters to provide realtime imaging of anatomical structures and working instruments during minimally invasive procedures. Manually navigating US catheters is difficult and requires extensive training in order to aim the US imager at desired targets. Therefore, a fourdegreeoffreedom (4DOF) robotic system was developed to automatically navigate US imaging catheters for enhanced imaging. A rotational transmission enables 3DOF for pitch, yaw, and roll of the imager. This transmission is translated by the 4DOF. An accuracy analysis calculated the maximum allowable joint motion error. Rotational joints must be accurate to within 1.5 deg, and the translational joint must be accurate within 1.4 mm. Motion tests then validated the accuracy of the robot. The average resulting errors in positioning of the rotational joints were 0.04–0.22 deg. The average measured backlash was 0.18–0.86 deg. Measurements of average translational positioning and backlash errors were negligible. The resulting joint motion errors were well within the required specifications for accurate robot motion. The output of the catheter was then tested to verify the effectiveness of the handle motions to transmit torques and translations to the catheter tip. The catheter tip was navigated to desired target poses with average error 1.3 mm and 0.71 deg. Such effective manipulation of US imaging catheters will enable better visualization in various procedures ranging from cardiac arrhythmia treatment to tumor removal in urological cases.
publisherThe American Society of Mechanical Engineers (ASME)
titleA Four Degree of Freedom Robot for Positioning Ultrasound Imaging Catheters
typeJournal Paper
journal volume8
journal issue5
journal titleJournal of Mechanisms and Robotics
identifier doi10.1115/1.4032249
journal fristpage51016
journal lastpage51016
identifier eissn1942-4310
treeJournal of Mechanisms and Robotics:;2016:;volume( 008 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record