YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improving Design Preference Prediction Accuracy Using Feature Learning

    Source: Journal of Mechanical Design:;2016:;volume( 138 ):;issue: 007::page 71404
    Author:
    Burnap, Alex
    ,
    Pan, Yanxin
    ,
    Liu, Ye
    ,
    Ren, Yi
    ,
    Lee, Honglak
    ,
    Gonzalez, Richard
    ,
    Papalambros, Panos Y.
    DOI: 10.1115/1.4033427
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Quantitative preference models are used to predict customer choices among design alternatives by collecting prior purchase data or survey answers. This paper examines how to improve the prediction accuracy of such models without collecting more data or changing the model. We propose to use features as an intermediary between the original customerlinked design variables and the preference model, transforming the original variables into a feature representation that captures the underlying design preference task more effectively. We apply this idea to automobile purchase decisions using three feature learning methods (principal component analysis (PCA), low rank and sparse matrix decomposition (LSD), and exponential sparse restricted Boltzmann machine (RBM)) and show that the use of features offers improvement in prediction accuracy using over 1 million real passenger vehicle purchase data. We then show that the interpretation and visualization of these feature representations may be used to help augment datadriven design decisions.
    • Download: (439.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improving Design Preference Prediction Accuracy Using Feature Learning

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/161802
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorBurnap, Alex
    contributor authorPan, Yanxin
    contributor authorLiu, Ye
    contributor authorRen, Yi
    contributor authorLee, Honglak
    contributor authorGonzalez, Richard
    contributor authorPapalambros, Panos Y.
    date accessioned2017-05-09T01:31:02Z
    date available2017-05-09T01:31:02Z
    date issued2016
    identifier issn1050-0472
    identifier othermd_138_06_061406.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/161802
    description abstractQuantitative preference models are used to predict customer choices among design alternatives by collecting prior purchase data or survey answers. This paper examines how to improve the prediction accuracy of such models without collecting more data or changing the model. We propose to use features as an intermediary between the original customerlinked design variables and the preference model, transforming the original variables into a feature representation that captures the underlying design preference task more effectively. We apply this idea to automobile purchase decisions using three feature learning methods (principal component analysis (PCA), low rank and sparse matrix decomposition (LSD), and exponential sparse restricted Boltzmann machine (RBM)) and show that the use of features offers improvement in prediction accuracy using over 1 million real passenger vehicle purchase data. We then show that the interpretation and visualization of these feature representations may be used to help augment datadriven design decisions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleImproving Design Preference Prediction Accuracy Using Feature Learning
    typeJournal Paper
    journal volume138
    journal issue7
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4033427
    journal fristpage71404
    journal lastpage71404
    identifier eissn1528-9001
    treeJournal of Mechanical Design:;2016:;volume( 138 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian