YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Novel Sampling Technique for Probabilistic Static Coverage Problems

    Source: Journal of Mechanical Design:;2016:;volume( 138 ):;issue: 003::page 31403
    Author:
    Zhang, Binbin
    ,
    Adurthi, Nagavenkat
    ,
    Rai, Rahul
    ,
    Singla, Puneet
    DOI: 10.1115/1.4032395
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Resource allocation in the presence of constraints is an important activity in many systems engineering problems such as surveillance, infrastructure planning, environmental monitoring, and cooperative task performance. The resources in many important problems are agents such as a person, machine, unmanned aerial vehicles (UAVs), infrastructures, and software. Effective execution of a given task is highly correlated with effective allocation of resources to execute the task. An important class of resource allocation problem in the presence of limited resources is static coverage problem. In static coverage problems, it is necessary to allocate resources (stationary configuration of agents) to cover an area of interest so that an event or spatial property of the area can be detected or monitored with high probability. In this paper, we outline a novel sampling algorithm for the static coverage problem in presence of probabilistic resource intensity allocation maps (RIAMs). The key intuition behind our sampling approach is to use the finite number of samples to generate an accurate representation of RIAM. The outlined sampling technique is based on an optimization framework that approximates the RIAM with piecewise linear surfaces on the Delaunay triangles and optimizes the sample placement locations to decrease the difference between the probability distribution and Delaunay triangle surface. Numerical results demonstrate that the algorithm is robust to the initial sample point locations and has superior performance in a wide range of theoretical problems and reallife applications. In a reallife application setting, we demonstrate the efficacy of the proposed algorithm to predict the position of wind stations for monitoring wind speeds across the U.S. The algorithm is also used to give recommendations on the placement of police cars in San Francisco and weather buoys in Pacific Ocean.
    • Download: (2.790Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Novel Sampling Technique for Probabilistic Static Coverage Problems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/161761
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorZhang, Binbin
    contributor authorAdurthi, Nagavenkat
    contributor authorRai, Rahul
    contributor authorSingla, Puneet
    date accessioned2017-05-09T01:30:54Z
    date available2017-05-09T01:30:54Z
    date issued2016
    identifier issn1050-0472
    identifier othermd_138_03_031403.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/161761
    description abstractResource allocation in the presence of constraints is an important activity in many systems engineering problems such as surveillance, infrastructure planning, environmental monitoring, and cooperative task performance. The resources in many important problems are agents such as a person, machine, unmanned aerial vehicles (UAVs), infrastructures, and software. Effective execution of a given task is highly correlated with effective allocation of resources to execute the task. An important class of resource allocation problem in the presence of limited resources is static coverage problem. In static coverage problems, it is necessary to allocate resources (stationary configuration of agents) to cover an area of interest so that an event or spatial property of the area can be detected or monitored with high probability. In this paper, we outline a novel sampling algorithm for the static coverage problem in presence of probabilistic resource intensity allocation maps (RIAMs). The key intuition behind our sampling approach is to use the finite number of samples to generate an accurate representation of RIAM. The outlined sampling technique is based on an optimization framework that approximates the RIAM with piecewise linear surfaces on the Delaunay triangles and optimizes the sample placement locations to decrease the difference between the probability distribution and Delaunay triangle surface. Numerical results demonstrate that the algorithm is robust to the initial sample point locations and has superior performance in a wide range of theoretical problems and reallife applications. In a reallife application setting, we demonstrate the efficacy of the proposed algorithm to predict the position of wind stations for monitoring wind speeds across the U.S. The algorithm is also used to give recommendations on the placement of police cars in San Francisco and weather buoys in Pacific Ocean.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Novel Sampling Technique for Probabilistic Static Coverage Problems
    typeJournal Paper
    journal volume138
    journal issue3
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4032395
    journal fristpage31403
    journal lastpage31403
    identifier eissn1528-9001
    treeJournal of Mechanical Design:;2016:;volume( 138 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian