Uncertainty Analysis of Melting and Resolidification of Gold Film Irradiated by Nano to Femtosecond Lasers Using Stochastic MethodSource: Journal of Heat Transfer:;2016:;volume( 138 ):;issue: 006::page 62301DOI: 10.1115/1.4032962Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: A samplebased stochastic model is presented to investigate the effects of uncertainties of various input parameters, including laser fluence, laser pulse duration, thermal conductivity constants for electron, and electron–lattice coupling factor, on solid–liquid phase change of gold film under nanoto femtosecond laser irradiation. Rapid melting and resolidification of a freestanding gold film subject to nanoto femtosecond laser are simulated using a twotemperature model incorporated with the interfacial tracking method. The interfacial velocity and temperature are obtained by solving the energy equation in terms of volumetric enthalpy for control volume (CV). The convergence of variance (COV) is used to characterize the variability of the input parameters, and the interquartile range (IQR) is used to calculate the uncertainty of the output parameters. The IQR analysis shows that the laser fluence and the electron–lattice coupling factor have the strongest influences on the interfacial location, velocity, and temperatures.
|
Collections
Show full item record
contributor author | Afrin, Nazia | |
contributor author | Zhang, Yuwen | |
contributor author | Chen, J. K. | |
date accessioned | 2017-05-09T01:30:24Z | |
date available | 2017-05-09T01:30:24Z | |
date issued | 2016 | |
identifier issn | 0022-1481 | |
identifier other | ht_138_06_062301.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/161606 | |
description abstract | A samplebased stochastic model is presented to investigate the effects of uncertainties of various input parameters, including laser fluence, laser pulse duration, thermal conductivity constants for electron, and electron–lattice coupling factor, on solid–liquid phase change of gold film under nanoto femtosecond laser irradiation. Rapid melting and resolidification of a freestanding gold film subject to nanoto femtosecond laser are simulated using a twotemperature model incorporated with the interfacial tracking method. The interfacial velocity and temperature are obtained by solving the energy equation in terms of volumetric enthalpy for control volume (CV). The convergence of variance (COV) is used to characterize the variability of the input parameters, and the interquartile range (IQR) is used to calculate the uncertainty of the output parameters. The IQR analysis shows that the laser fluence and the electron–lattice coupling factor have the strongest influences on the interfacial location, velocity, and temperatures. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Uncertainty Analysis of Melting and Resolidification of Gold Film Irradiated by Nano to Femtosecond Lasers Using Stochastic Method | |
type | Journal Paper | |
journal volume | 138 | |
journal issue | 6 | |
journal title | Journal of Heat Transfer | |
identifier doi | 10.1115/1.4032962 | |
journal fristpage | 62301 | |
journal lastpage | 62301 | |
identifier eissn | 1528-8943 | |
tree | Journal of Heat Transfer:;2016:;volume( 138 ):;issue: 006 | |
contenttype | Fulltext |