YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Innovative Nanostructured Wicks for Heat Pipes

    Source: Journal of Heat Transfer:;2016:;volume( 138 ):;issue: 002::page 20907
    Author:
    Tian, Bohan
    ,
    Wilson, Corey
    ,
    Ma, H. B.
    DOI: 10.1115/1.4032235
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A good wicking structure is necessary for the design of a highly efficient heat pipe. Several unique aluminum oxide nanostructures were developed as wicks for heat pipes. The wicks were manufactured via an anodization process at various anodization voltages and etching times. This allows for the manufacture of spatially variable wicking structures that can be tuned for specific applications. The resulting nanostructures were characterized with a scanning electron microscope. Six distinct wicking structures are shown in Fig. 1. The honeycomb nanostructure is a selfordered, hexagonal columnar array. The clumped nanotube structure is composed of bundles of nanotubes separated by deep grooves. The teepee nanostructure has a honeycomb bottom covered with a conical structure top. The horizontal nanofiber structure consists of nanofibers laying parallel to the substrate surface. The ridge network nanostructure is a multiscaled structure with nanoporous ridges. The clumped nanofiber structure is formed from long tangled fibers that meet in a thin ridge. Each of these structures has features useful for nucleation, evaporation, and condensation. These wicks will have many applications in the fields of heat pipes and twophase heat transfer.
    • Download: (4.507Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Innovative Nanostructured Wicks for Heat Pipes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/161550
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorTian, Bohan
    contributor authorWilson, Corey
    contributor authorMa, H. B.
    date accessioned2017-05-09T01:30:13Z
    date available2017-05-09T01:30:13Z
    date issued2016
    identifier issn0022-1481
    identifier otherht_138_02_020907.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/161550
    description abstractA good wicking structure is necessary for the design of a highly efficient heat pipe. Several unique aluminum oxide nanostructures were developed as wicks for heat pipes. The wicks were manufactured via an anodization process at various anodization voltages and etching times. This allows for the manufacture of spatially variable wicking structures that can be tuned for specific applications. The resulting nanostructures were characterized with a scanning electron microscope. Six distinct wicking structures are shown in Fig. 1. The honeycomb nanostructure is a selfordered, hexagonal columnar array. The clumped nanotube structure is composed of bundles of nanotubes separated by deep grooves. The teepee nanostructure has a honeycomb bottom covered with a conical structure top. The horizontal nanofiber structure consists of nanofibers laying parallel to the substrate surface. The ridge network nanostructure is a multiscaled structure with nanoporous ridges. The clumped nanofiber structure is formed from long tangled fibers that meet in a thin ridge. Each of these structures has features useful for nucleation, evaporation, and condensation. These wicks will have many applications in the fields of heat pipes and twophase heat transfer.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInnovative Nanostructured Wicks for Heat Pipes
    typeJournal Paper
    journal volume138
    journal issue2
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4032235
    journal fristpage20907
    journal lastpage20907
    identifier eissn1528-8943
    treeJournal of Heat Transfer:;2016:;volume( 138 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian