YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mapping Thickness Dependent Thermal Conductivity of GaN

    Source: Journal of Heat Transfer:;2016:;volume( 138 ):;issue: 002::page 20906
    Author:
    Ziade, Elbara
    ,
    Yang, Jia
    ,
    Brummer, Gordie
    ,
    Nothern, Denis
    ,
    Moustaks, Theodore
    ,
    Schmidt, Aaron
    DOI: 10.1115/1.4032234
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Frequency domain thermoreflectance (FDTR) is used to create quantitative maps of thermal conductivity and thickness for a thinning gallium nitride (GaN) film on silicon carbide (SiC). GaN was grown by molecular beam epitaxy on a 4HSiC substrate with a gradient in the film thickness found near the edge of the chip. The sample was then coated with a 5 nm nickel adhesion layer and a 85 nm gold transducer layer for the FDTR measurement. A piezo stage raster scans the sample to create phase images at different frequencies. For each pixel, a periodically modulated continuouswave laser (the red pump beam) is focused to a Gaussian spot, less than 2 um in diameter, to locally heat the sample, while a second beam (the green probe beam) monitors the surface temperature through a proportional change in the reflectivity of gold. The pump beam is modulated simultaneously at six frequencies and the thermal conductivity and thickness of the GaN film are extracted by minimizing the error between the measured probe phase lag at each frequency and an analytical solution to the heat diffusion equation in a multilayer stack of materials. A scanning electron microscope image verifies the thinning GaN. We mark the imaged area with a red box. A schematic of the GaN sample in our measurement system is shown in the top right corner, along with the two fitting properties highlighted with a red box. We show the six phase images and the two obtained property maps: thickness and thermal conductivity of the GaN. Our results indicate a thickness dependent thermal conductivity of GaN, which has implications of thermal management in GaNbased high electron mobility transistors.
    • Download: (963.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mapping Thickness Dependent Thermal Conductivity of GaN

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/161549
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorZiade, Elbara
    contributor authorYang, Jia
    contributor authorBrummer, Gordie
    contributor authorNothern, Denis
    contributor authorMoustaks, Theodore
    contributor authorSchmidt, Aaron
    date accessioned2017-05-09T01:30:13Z
    date available2017-05-09T01:30:13Z
    date issued2016
    identifier issn0022-1481
    identifier otherht_138_02_020906.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/161549
    description abstractFrequency domain thermoreflectance (FDTR) is used to create quantitative maps of thermal conductivity and thickness for a thinning gallium nitride (GaN) film on silicon carbide (SiC). GaN was grown by molecular beam epitaxy on a 4HSiC substrate with a gradient in the film thickness found near the edge of the chip. The sample was then coated with a 5 nm nickel adhesion layer and a 85 nm gold transducer layer for the FDTR measurement. A piezo stage raster scans the sample to create phase images at different frequencies. For each pixel, a periodically modulated continuouswave laser (the red pump beam) is focused to a Gaussian spot, less than 2 um in diameter, to locally heat the sample, while a second beam (the green probe beam) monitors the surface temperature through a proportional change in the reflectivity of gold. The pump beam is modulated simultaneously at six frequencies and the thermal conductivity and thickness of the GaN film are extracted by minimizing the error between the measured probe phase lag at each frequency and an analytical solution to the heat diffusion equation in a multilayer stack of materials. A scanning electron microscope image verifies the thinning GaN. We mark the imaged area with a red box. A schematic of the GaN sample in our measurement system is shown in the top right corner, along with the two fitting properties highlighted with a red box. We show the six phase images and the two obtained property maps: thickness and thermal conductivity of the GaN. Our results indicate a thickness dependent thermal conductivity of GaN, which has implications of thermal management in GaNbased high electron mobility transistors.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMapping Thickness Dependent Thermal Conductivity of GaN
    typeJournal Paper
    journal volume138
    journal issue2
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4032234
    journal fristpage20906
    journal lastpage20906
    identifier eissn1528-8943
    treeJournal of Heat Transfer:;2016:;volume( 138 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian