YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Turbulence Characteristics of Vegetated Channel With Downward Seepage

    Source: Journal of Fluids Engineering:;2016:;volume( 138 ):;issue: 012::page 121102
    Author:
    Bebina Devi, Thokchom
    ,
    Sharma, Anurag
    ,
    Kumar, Bimlesh
    DOI: 10.1115/1.4033814
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Experimental studies were carried out for investigating changes in flow characteristics with the presence of flexible vegetation in a channel. The study focuses on the effect of introducing downward seepage on velocity profiles, Reynolds shear stress (RSS), and different turbulent length scales in a vegetative channel. The presence of vegetation provides drag and reduces the flow velocity. The turbulence generation mainly comes from the oscillations occurring near the top of the vegetation as is evident from the achievement of maximum Reynolds stress near the top of the vegetation. Application of downward seepage results in a higher velocity zone in the lower vegetation zone and a higher Reynolds stress. Quadrant analysis shows that sweep and ejection contribute most to Reynolds stress. The dominance of sweep event over ejection event is more with the application of downward seepage which means more bed transport. Different turbulent length and time scales increase with increase in downward seepage percentage due to reduction in energy dissipation. The increase in the length scale and time scale with downward seepage infers that higher level of turbulence prevail near the bed with an increased eddy size resulting in higher Reynolds stresses with downward seepage. The universal probability distribution functions (PDFs) of velocity fluctuations, RSS, and conditional RSS of vegetative channel follow Gram Charlier (GC) series based on exponential distribution except that a slight departure of inward and outward interactions of conditional RSS is observed which may be due to weaker events.
    • Download: (1.901Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Turbulence Characteristics of Vegetated Channel With Downward Seepage

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/161454
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorBebina Devi, Thokchom
    contributor authorSharma, Anurag
    contributor authorKumar, Bimlesh
    date accessioned2017-05-09T01:29:53Z
    date available2017-05-09T01:29:53Z
    date issued2016
    identifier issn0098-2202
    identifier otherfe_138_12_121102.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/161454
    description abstractExperimental studies were carried out for investigating changes in flow characteristics with the presence of flexible vegetation in a channel. The study focuses on the effect of introducing downward seepage on velocity profiles, Reynolds shear stress (RSS), and different turbulent length scales in a vegetative channel. The presence of vegetation provides drag and reduces the flow velocity. The turbulence generation mainly comes from the oscillations occurring near the top of the vegetation as is evident from the achievement of maximum Reynolds stress near the top of the vegetation. Application of downward seepage results in a higher velocity zone in the lower vegetation zone and a higher Reynolds stress. Quadrant analysis shows that sweep and ejection contribute most to Reynolds stress. The dominance of sweep event over ejection event is more with the application of downward seepage which means more bed transport. Different turbulent length and time scales increase with increase in downward seepage percentage due to reduction in energy dissipation. The increase in the length scale and time scale with downward seepage infers that higher level of turbulence prevail near the bed with an increased eddy size resulting in higher Reynolds stresses with downward seepage. The universal probability distribution functions (PDFs) of velocity fluctuations, RSS, and conditional RSS of vegetative channel follow Gram Charlier (GC) series based on exponential distribution except that a slight departure of inward and outward interactions of conditional RSS is observed which may be due to weaker events.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTurbulence Characteristics of Vegetated Channel With Downward Seepage
    typeJournal Paper
    journal volume138
    journal issue12
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4033814
    journal fristpage121102
    journal lastpage121102
    identifier eissn1528-901X
    treeJournal of Fluids Engineering:;2016:;volume( 138 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian