YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Measurement of Temperature Effects on Cavitation in a Turbopump Inducer

    Source: Journal of Fluids Engineering:;2016:;volume( 138 ):;issue: 001::page 11304
    Author:
    Kim, Junho
    ,
    Song, Seung Jin
    DOI: 10.1115/1.4030842
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Temperature effects on the critical cavitation number and rotating cavitation in a turbopump inducer have been experimentally investigated in water. Static pressures upstream and downstream of the inducer have been measured to determine the cavitation performance, and cavitation instabilities have been detected using unsteady pressure sensors and a highspeed camera. Two kinds of cavitation instabilities have been identified—rotating cavitation and asymmetric attached cavitation. To quantify temperature effects, nondimensional thermal parameter has been adopted. Increasing water temperature, or increasing nondimensional thermal parameter, lowers the critical cavitation number. Increasing nondimensional thermal parameter also shifts the onset of rotating cavitation to a lower cavitation number and reduces the intensity of rotating cavitation. However, for values larger than 0.540 (340 K, 5000 rpm), the critical cavitation number and the rotating cavitation onset cavitation number become independent of the nondimensional thermal parameter. The onset of the head coefficient degradation correlates with the onset of rotating cavitation regardless of temperature.
    • Download: (1.540Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Measurement of Temperature Effects on Cavitation in a Turbopump Inducer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/161294
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorKim, Junho
    contributor authorSong, Seung Jin
    date accessioned2017-05-09T01:29:15Z
    date available2017-05-09T01:29:15Z
    date issued2016
    identifier issn0098-2202
    identifier otherfe_138_01_011304.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/161294
    description abstractTemperature effects on the critical cavitation number and rotating cavitation in a turbopump inducer have been experimentally investigated in water. Static pressures upstream and downstream of the inducer have been measured to determine the cavitation performance, and cavitation instabilities have been detected using unsteady pressure sensors and a highspeed camera. Two kinds of cavitation instabilities have been identified—rotating cavitation and asymmetric attached cavitation. To quantify temperature effects, nondimensional thermal parameter has been adopted. Increasing water temperature, or increasing nondimensional thermal parameter, lowers the critical cavitation number. Increasing nondimensional thermal parameter also shifts the onset of rotating cavitation to a lower cavitation number and reduces the intensity of rotating cavitation. However, for values larger than 0.540 (340 K, 5000 rpm), the critical cavitation number and the rotating cavitation onset cavitation number become independent of the nondimensional thermal parameter. The onset of the head coefficient degradation correlates with the onset of rotating cavitation regardless of temperature.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMeasurement of Temperature Effects on Cavitation in a Turbopump Inducer
    typeJournal Paper
    journal volume138
    journal issue1
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4030842
    journal fristpage11304
    journal lastpage11304
    identifier eissn1528-901X
    treeJournal of Fluids Engineering:;2016:;volume( 138 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian