Show simple item record

contributor authorXu, Hui
contributor authorLaPointe, Leon A.
date accessioned2017-05-09T01:28:50Z
date available2017-05-09T01:28:50Z
date issued2016
identifier issn1528-8919
identifier othergtp_138_11_112803.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/161191
description abstractThere are increasing interests in converting solid waste or lignocellulosic biomass into gaseous fuels and using reciprocating internal combustion engine to generate electricity. A widely used technique is gasification. Gasification is a process where the solid fuel and air are introduced to a partial oxidation environment, and generate combustible gaseous called synthesis gas or syngas. Converting solid waste into gaseous fuel can reduce landfill and create income for process owners. However, it can be very challenging to use syngas on a gaseous fueled spark ignited (SI) engine, such as a natural gas (NG) engine. NG engines are typically developed with pipeline quality natural gas (PQNG). NG engines can operate at lean burn spark ignited (LBSI), or stoichiometric with exhaust gas recirculation (EGR) spark ignited (SESI) conditions. This work discusses the LBSI engine condition. NG engines can perform very differently when fueled with nonstandard gaseous fuels such as syngas without appropriate tuning. It is necessary to evaluate engine performance in terms of combustion duration, relative knock propensity, and NOx emissions for such applications. Due to constraints in time and resources it is often not feasible to test such fuel blends in the laboratory. An analytical method is needed to predict engine performance in a timely manner. This study investigated the possibility of using syngas on an SI engine developed with PQNG. Engine performance was predicted using in house developed models and PQNG as the reference fuel. Laminar flame speed (LFS), adiabatic flame temperature (AFT), and autoignition interval (AI) are used to predict combustion duration, engine out NOx and engine knock propensity relative to NG at the target lambda values. Single cylinder research engine data obtained under lean burn conditions fueled with PQNG was selected as the baseline. LFS, AFT, and AI of syngas were computed at reference conditions. Lambda of operation was predicted for syngas to provide the same burn rate as NG at the reference lambda value for NG. Analysis shows that, using syngas at the selected lambda, the engine can have less engine out NOx emissions and less knock propensity relative to NG at the same speed and load. Modifications to fuel system components may be required to avoid engine derate.
publisherThe American Society of Mechanical Engineers (ASME)
titleEngine Capability Prediction for Spark Ignited Engine Fueled With Syngas
typeJournal Paper
journal volume138
journal issue10
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.4033183
journal fristpage102812
journal lastpage102812
identifier eissn0742-4795
treeJournal of Engineering for Gas Turbines and Power:;2016:;volume( 138 ):;issue: 010
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record