YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parameter Estimation Algorithms for Hammerstein–Wiener Systems With Autoregressive Moving Average Noise

    Source: Journal of Computational and Nonlinear Dynamics:;2016:;volume( 011 ):;issue: 003::page 31012
    Author:
    Wang, Yanjiao
    ,
    Ding, Feng
    DOI: 10.1115/1.4031420
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Hammerstein–Wiener (H–W) systems are a class of typical nonlinear systems. This paper studies the gradientbased parameter estimation algorithms for H–W nonlinear systems based on the multiinnovation identification theory and the data filtering technique. The proposed methods include a generalized extended stochastic gradient (GESG) algorithm, a multiinnovation GESG (MIGESG) algorithm, a data filtering based GESG (FGESG) algorithm and a data filtering based MIGESG algorithm. Finally, the computational efficiency of the proposed algorithms are analyzed and compared. The simulation example verifies the theoretical results.
    • Download: (571.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parameter Estimation Algorithms for Hammerstein–Wiener Systems With Autoregressive Moving Average Noise

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/160494
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorWang, Yanjiao
    contributor authorDing, Feng
    date accessioned2017-05-09T01:26:28Z
    date available2017-05-09T01:26:28Z
    date issued2016
    identifier issn1555-1415
    identifier othercnd_011_03_031012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/160494
    description abstractHammerstein–Wiener (H–W) systems are a class of typical nonlinear systems. This paper studies the gradientbased parameter estimation algorithms for H–W nonlinear systems based on the multiinnovation identification theory and the data filtering technique. The proposed methods include a generalized extended stochastic gradient (GESG) algorithm, a multiinnovation GESG (MIGESG) algorithm, a data filtering based GESG (FGESG) algorithm and a data filtering based MIGESG algorithm. Finally, the computational efficiency of the proposed algorithms are analyzed and compared. The simulation example verifies the theoretical results.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleParameter Estimation Algorithms for Hammerstein–Wiener Systems With Autoregressive Moving Average Noise
    typeJournal Paper
    journal volume11
    journal issue3
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4031420
    journal fristpage31012
    journal lastpage31012
    identifier eissn1555-1423
    treeJournal of Computational and Nonlinear Dynamics:;2016:;volume( 011 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian