YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Theoretical and Experimental Identification of Cantilever Beam With Clearances Using Statistical and Subspace Based Methods

    Source: Journal of Computational and Nonlinear Dynamics:;2016:;volume( 011 ):;issue: 003::page 31003
    Author:
    Li, Bing
    ,
    Han, Luofeng
    ,
    Jin, Wei
    ,
    Quan, Shuanglu
    DOI: 10.1115/1.4031193
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Clearance turns up in a large number of engineering structures because of the errors during assembling, manufacturing, and wearing. The presence of clearance in engineering structures changes the normal dynamic response and will result in low precision and short lifetime. The clearance parameter identification of such nonlinear system is the prerequisite to control and eliminate the effect of clearance nonlinearity. In this paper, a derivative plot of probability density function (DPPDF) for displacement response is proposed to precisely identify the clearance value of continuous system, and the nonlinear subspace identification (NSI) method is modified to recognize the related contact stiffness based on the frequency response function (FRF) equations of continuous system. The DPPDF method is carried out by analyzing the distribution characteristic of displacement response, and the clearance value is derived through inspecting the probability density function (PDF) plot and the second derivative plot of the PDF. Based on the identified clearance, the clearance nonlinearity is regarded as external force, and the relationship between the dynamic responses and the external forces in frequency domain can be expressed as the form of FRF equations. Based on the FRF equations, the contact stiffness in continuous system is obtained with modified NSI method. This combined identification process is verified by a singledegreeoffreedom (SDOF) system and a cantilever beam system with clearances, and some influence factors of this identification process, including noise, transfer error, and force level, are discussed in detail. In the end, an experiment device with changeable clearance and contact stiffness was designed to conduct identification experiments, and the results show that the proposed methods perform effectively in identifying the clearance parameters.
    • Download: (2.609Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Theoretical and Experimental Identification of Cantilever Beam With Clearances Using Statistical and Subspace Based Methods

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/160481
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorLi, Bing
    contributor authorHan, Luofeng
    contributor authorJin, Wei
    contributor authorQuan, Shuanglu
    date accessioned2017-05-09T01:26:25Z
    date available2017-05-09T01:26:25Z
    date issued2016
    identifier issn1555-1415
    identifier othercnd_011_03_031003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/160481
    description abstractClearance turns up in a large number of engineering structures because of the errors during assembling, manufacturing, and wearing. The presence of clearance in engineering structures changes the normal dynamic response and will result in low precision and short lifetime. The clearance parameter identification of such nonlinear system is the prerequisite to control and eliminate the effect of clearance nonlinearity. In this paper, a derivative plot of probability density function (DPPDF) for displacement response is proposed to precisely identify the clearance value of continuous system, and the nonlinear subspace identification (NSI) method is modified to recognize the related contact stiffness based on the frequency response function (FRF) equations of continuous system. The DPPDF method is carried out by analyzing the distribution characteristic of displacement response, and the clearance value is derived through inspecting the probability density function (PDF) plot and the second derivative plot of the PDF. Based on the identified clearance, the clearance nonlinearity is regarded as external force, and the relationship between the dynamic responses and the external forces in frequency domain can be expressed as the form of FRF equations. Based on the FRF equations, the contact stiffness in continuous system is obtained with modified NSI method. This combined identification process is verified by a singledegreeoffreedom (SDOF) system and a cantilever beam system with clearances, and some influence factors of this identification process, including noise, transfer error, and force level, are discussed in detail. In the end, an experiment device with changeable clearance and contact stiffness was designed to conduct identification experiments, and the results show that the proposed methods perform effectively in identifying the clearance parameters.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTheoretical and Experimental Identification of Cantilever Beam With Clearances Using Statistical and Subspace Based Methods
    typeJournal Paper
    journal volume11
    journal issue3
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4031193
    journal fristpage31003
    journal lastpage31003
    identifier eissn1555-1423
    treeJournal of Computational and Nonlinear Dynamics:;2016:;volume( 011 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian