YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Recursive Least Squares Identification Algorithms for Multiple Input Nonlinear Box–Jenkins Systems Using the Maximum Likelihood Principle

    Source: Journal of Computational and Nonlinear Dynamics:;2016:;volume( 011 ):;issue: 002::page 21005
    Author:
    Chen, Feiyan
    ,
    Ding, Feng
    DOI: 10.1115/1.4030387
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Multipleinput multipleoutput systems can be decomposed into several multipleinput singleoutput systems. This paper studies identification problems of multipleinput singleoutput nonlinear Box–Jenkins systems. In order to improve the computational efficiency, we decompose a multipleinput nonlinear Box–Jenkins system into two subsystems, one containing the parameters of the linear block, the other containing the parameters of the nonlinear block. A decomposition based maximum likelihood generalized extended least squares algorithm is derived for identifying the parameters of the system by using the maximum likelihood principle. Furthermore, a decomposition based generalized extended least squares algorithm is presented for comparison. The numerical example indicates that the proposed algorithms can effectively estimate the parameters of the nonlinear systems and can generate more accurate parameter estimates compared with existing methods.
    • Download: (445.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Recursive Least Squares Identification Algorithms for Multiple Input Nonlinear Box–Jenkins Systems Using the Maximum Likelihood Principle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/160457
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorChen, Feiyan
    contributor authorDing, Feng
    date accessioned2017-05-09T01:26:20Z
    date available2017-05-09T01:26:20Z
    date issued2016
    identifier issn1555-1415
    identifier othercnd_011_02_021005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/160457
    description abstractMultipleinput multipleoutput systems can be decomposed into several multipleinput singleoutput systems. This paper studies identification problems of multipleinput singleoutput nonlinear Box–Jenkins systems. In order to improve the computational efficiency, we decompose a multipleinput nonlinear Box–Jenkins system into two subsystems, one containing the parameters of the linear block, the other containing the parameters of the nonlinear block. A decomposition based maximum likelihood generalized extended least squares algorithm is derived for identifying the parameters of the system by using the maximum likelihood principle. Furthermore, a decomposition based generalized extended least squares algorithm is presented for comparison. The numerical example indicates that the proposed algorithms can effectively estimate the parameters of the nonlinear systems and can generate more accurate parameter estimates compared with existing methods.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRecursive Least Squares Identification Algorithms for Multiple Input Nonlinear Box–Jenkins Systems Using the Maximum Likelihood Principle
    typeJournal Paper
    journal volume11
    journal issue2
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4030387
    journal fristpage21005
    journal lastpage21005
    identifier eissn1555-1423
    treeJournal of Computational and Nonlinear Dynamics:;2016:;volume( 011 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian