YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessment of Workspace Attributes Under Simulated Index Finger Proximal Interphalangeal Arthrodesis

    Source: Journal of Biomechanical Engineering:;2016:;volume( 138 ):;issue: 005::page 51005
    Author:
    Arauz, Paul G.
    ,
    Sisto, Sue A.
    ,
    Kao, Imin
    DOI: 10.1115/1.4032967
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This article presented an assessment of quantitative measures of workspace (WS) attributes under simulated proximal interphalangeal (PIP) joint arthrodesis of the index finger. Seven healthy subjects were tested with the PIP joint unconstrained (UC) and constrained to selected angles using a motion analysis system. A model of the constrained finger was developed in order to address the impact of the inclusion of prescribed joint arthrodesis angles on WS attributes. Model parameters were obtained from system identification experiments involving flexion–extension (FE) movements of the UC and constrained finger. The data of experimental FE movements of the constrained finger were used to generate the twodimensional (2D) WS boundaries and to validate the model. A weighted criterion was formulated to define an optimal constraint angle among several system parameters. Results indicated that a PIP joint immobilization angle of 40–50 deg of flexion maximized the 2D WS. The analysis of the aspect ratio of the 2D WS indicated that the WS was more evenly distributed as the imposed PIP joint constraint angle increased. With the imposed PIP joint constraint angles of 30 deg, 40 deg, 50 deg, and 60 deg of flexion, the normalized maximum distance of fingertip reach was reduced by approximately 3%, 4%, 7%, and 9%, respectively.
    • Download: (1.364Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessment of Workspace Attributes Under Simulated Index Finger Proximal Interphalangeal Arthrodesis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/160404
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorArauz, Paul G.
    contributor authorSisto, Sue A.
    contributor authorKao, Imin
    date accessioned2017-05-09T01:26:10Z
    date available2017-05-09T01:26:10Z
    date issued2016
    identifier issn0148-0731
    identifier otherbio_138_05_051005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/160404
    description abstractThis article presented an assessment of quantitative measures of workspace (WS) attributes under simulated proximal interphalangeal (PIP) joint arthrodesis of the index finger. Seven healthy subjects were tested with the PIP joint unconstrained (UC) and constrained to selected angles using a motion analysis system. A model of the constrained finger was developed in order to address the impact of the inclusion of prescribed joint arthrodesis angles on WS attributes. Model parameters were obtained from system identification experiments involving flexion–extension (FE) movements of the UC and constrained finger. The data of experimental FE movements of the constrained finger were used to generate the twodimensional (2D) WS boundaries and to validate the model. A weighted criterion was formulated to define an optimal constraint angle among several system parameters. Results indicated that a PIP joint immobilization angle of 40–50 deg of flexion maximized the 2D WS. The analysis of the aspect ratio of the 2D WS indicated that the WS was more evenly distributed as the imposed PIP joint constraint angle increased. With the imposed PIP joint constraint angles of 30 deg, 40 deg, 50 deg, and 60 deg of flexion, the normalized maximum distance of fingertip reach was reduced by approximately 3%, 4%, 7%, and 9%, respectively.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAssessment of Workspace Attributes Under Simulated Index Finger Proximal Interphalangeal Arthrodesis
    typeJournal Paper
    journal volume138
    journal issue5
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4032967
    journal fristpage51005
    journal lastpage51005
    identifier eissn1528-8951
    treeJournal of Biomechanical Engineering:;2016:;volume( 138 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian