YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stability Analysis and Improvement of Uncertain Disk Brake Systems With Random and Interval Parameters for Squeal Reduction

    Source: Journal of Vibration and Acoustics:;2015:;volume( 137 ):;issue: 005::page 51003
    Author:
    Lأ¼, Hui
    ,
    Yu, Dejie
    DOI: 10.1115/1.4030044
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Stability analysis and improvement of disk brake systems for squeal reduction have been investigated by automotive manufacturers for decades. However, most of the researches have not considered uncertainties. For this case, a practical approach for analyzing and improving the stability of uncertain disk brake systems is proposed in this paper. In the proposed approach, a hybrid uncertain model with random and interval parameters is introduced to deal with the uncertainties existing in a disk brake system. The parameters of brake pressure, densities of component materials, and thickness of back plate are treated as random variables; whereas the parameters of frictional coefficient and Young's modulus of component materials are treated as interval variables. Attention is focused on stability analysis of the disk brake system for squeal reduction, and the stability is investigated via complex eigenvalue analysis (CEA). The dominant unstable mode is extracted by performing CEA based on a linear finite element (FE) model, and the negative damping ratio corresponding to the dominant unstable mode is selected as the indicator of system stability. To improve the efficiency of analysis, response surface methodology (RSM) is used to replace the timeconsuming FE simulations. Based on RSM and CEA, the stability analysis model of the disk brake system is constructed, in which reliability analysis, hybrid uncertain analysis and sensitivity analysis are applied to deal with the uncertain problems. The analysis results of a numerical example demonstrate the effectiveness of the proposed approach, and show that the stability and robustness of the uncertain disk brake system can be improved effectively by increasing the stiffness of back plate.
    • Download: (1.069Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stability Analysis and Improvement of Uncertain Disk Brake Systems With Random and Interval Parameters for Squeal Reduction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/160091
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorLأ¼, Hui
    contributor authorYu, Dejie
    date accessioned2017-05-09T01:25:10Z
    date available2017-05-09T01:25:10Z
    date issued2015
    identifier issn1048-9002
    identifier othervib_137_05_051003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/160091
    description abstractStability analysis and improvement of disk brake systems for squeal reduction have been investigated by automotive manufacturers for decades. However, most of the researches have not considered uncertainties. For this case, a practical approach for analyzing and improving the stability of uncertain disk brake systems is proposed in this paper. In the proposed approach, a hybrid uncertain model with random and interval parameters is introduced to deal with the uncertainties existing in a disk brake system. The parameters of brake pressure, densities of component materials, and thickness of back plate are treated as random variables; whereas the parameters of frictional coefficient and Young's modulus of component materials are treated as interval variables. Attention is focused on stability analysis of the disk brake system for squeal reduction, and the stability is investigated via complex eigenvalue analysis (CEA). The dominant unstable mode is extracted by performing CEA based on a linear finite element (FE) model, and the negative damping ratio corresponding to the dominant unstable mode is selected as the indicator of system stability. To improve the efficiency of analysis, response surface methodology (RSM) is used to replace the timeconsuming FE simulations. Based on RSM and CEA, the stability analysis model of the disk brake system is constructed, in which reliability analysis, hybrid uncertain analysis and sensitivity analysis are applied to deal with the uncertain problems. The analysis results of a numerical example demonstrate the effectiveness of the proposed approach, and show that the stability and robustness of the uncertain disk brake system can be improved effectively by increasing the stiffness of back plate.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStability Analysis and Improvement of Uncertain Disk Brake Systems With Random and Interval Parameters for Squeal Reduction
    typeJournal Paper
    journal volume137
    journal issue5
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4030044
    journal fristpage51003
    journal lastpage51003
    identifier eissn1528-8927
    treeJournal of Vibration and Acoustics:;2015:;volume( 137 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian