YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fluidic Flexible Matrix Composite Vibration Absorber for a Cantilever Beam

    Source: Journal of Vibration and Acoustics:;2015:;volume( 137 ):;issue: 002::page 21005
    Author:
    Zhu, Bin
    ,
    Rahn, Christopher D.
    ,
    Bakis, Charles E.
    DOI: 10.1115/1.4029002
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Fluidic flexible matrix composite (F2MC) tubes with resonant fluidic circuits can absorb vibration at a specific frequency when bonded to flexible structures. The transverse structural vibration applies cyclic axial strain to the F2MC tubes. The anisotropic elastic properties of the composite tube amplify the axial strain to produce large internal volume change. The volume change forces fluid through a flow port and into an external accumulator. The fluid inertance in the flow port (inertia track) and the stiffness of the accumulator are analogous to the vibration absorbing mass and stiffness in a conventional tuned vibration absorber. An analytical model of an F2MCintegrated cantilever beam is developed based on Euler–Bernoulli beam theory and Lekhnitskii's solution for anisotropic layered tubes. The collocated tip force to tip displacement analytical transfer function of the coupled system is derived. Experimental testing is conducted on a laboratoryscale F2MC beam structure that uses miniature tubes and fluidic components. The resonant peak becomes an absorber notch in the frequency response function (FRF) if the inertia track length is properly tuned. Tuning the fluid bulk modulus and total flow resistance in the theoretical model produces results that match the experiment well, predicting a magnitude reduction of 35 dB at the first resonance using an F2MC absorber. Based on the experimentally validated model, analysis results show that the cantilever beam vibration can be reduced by more than 99% with optimally designed tube attachment points and flow port geometry.
    • Download: (2.573Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fluidic Flexible Matrix Composite Vibration Absorber for a Cantilever Beam

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/160013
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorZhu, Bin
    contributor authorRahn, Christopher D.
    contributor authorBakis, Charles E.
    date accessioned2017-05-09T01:24:55Z
    date available2017-05-09T01:24:55Z
    date issued2015
    identifier issn1048-9002
    identifier othervib_137_02_021005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/160013
    description abstractFluidic flexible matrix composite (F2MC) tubes with resonant fluidic circuits can absorb vibration at a specific frequency when bonded to flexible structures. The transverse structural vibration applies cyclic axial strain to the F2MC tubes. The anisotropic elastic properties of the composite tube amplify the axial strain to produce large internal volume change. The volume change forces fluid through a flow port and into an external accumulator. The fluid inertance in the flow port (inertia track) and the stiffness of the accumulator are analogous to the vibration absorbing mass and stiffness in a conventional tuned vibration absorber. An analytical model of an F2MCintegrated cantilever beam is developed based on Euler–Bernoulli beam theory and Lekhnitskii's solution for anisotropic layered tubes. The collocated tip force to tip displacement analytical transfer function of the coupled system is derived. Experimental testing is conducted on a laboratoryscale F2MC beam structure that uses miniature tubes and fluidic components. The resonant peak becomes an absorber notch in the frequency response function (FRF) if the inertia track length is properly tuned. Tuning the fluid bulk modulus and total flow resistance in the theoretical model produces results that match the experiment well, predicting a magnitude reduction of 35 dB at the first resonance using an F2MC absorber. Based on the experimentally validated model, analysis results show that the cantilever beam vibration can be reduced by more than 99% with optimally designed tube attachment points and flow port geometry.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFluidic Flexible Matrix Composite Vibration Absorber for a Cantilever Beam
    typeJournal Paper
    journal volume137
    journal issue2
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4029002
    journal fristpage21005
    journal lastpage21005
    identifier eissn1528-8927
    treeJournal of Vibration and Acoustics:;2015:;volume( 137 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian