YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Scaling of Film Cooling Performance From Ambient to Engine Temperatures

    Source: Journal of Turbomachinery:;2015:;volume( 137 ):;issue: 007::page 71007
    Author:
    Greiner, Nathan J.
    ,
    Polanka, Marc D.
    ,
    Rutledge, James L.
    DOI: 10.1115/1.4029197
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The present study employs computational fluid dynamics (CFD) to explore the complexities of scaling film cooling performance measurements from ambient laboratory conditions to high temperature engine conditions. In this investigation, a single shaped hole is examined computationally at both engine and near ambient temperatures to understand the impact of temperature dependent properties on scaling film cooling performance. By varying select flow and thermal parameters for the low temperature cases and comparing the results to high temperature flow, the parameters which must be matched to scale film cooling performance are determined. The results show that only matching the density and mass flux ratios is insufficient for scaling to high temperatures. In accordance with convective heat transfer fundamentals, freestream and coolant Reynolds numbers and Prandtl numbers must also be matched to obtain scalable results. By virtue of the Prandtl number for air remaining nearly constant with temperature, the Prandtl number at ambient conditions is sufficiently matched to engine temperatures. However, laboratory limitations can prevent matching both the freestream and coolant Reynolds numbers simultaneously. By examining this tradeoff, it is determined that matching the coolant Reynolds number produces the best scalability. It is also found that by averaging the adiabatic effectiveness of two experiments in which the freestream and coolant Reynolds number are matched, respectively, results in significantly better scalability for cases with a separated coolant jet.
    • Download: (3.206Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Scaling of Film Cooling Performance From Ambient to Engine Temperatures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/159943
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorGreiner, Nathan J.
    contributor authorPolanka, Marc D.
    contributor authorRutledge, James L.
    date accessioned2017-05-09T01:24:37Z
    date available2017-05-09T01:24:37Z
    date issued2015
    identifier issn0889-504X
    identifier otherturbo_137_07_071007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/159943
    description abstractThe present study employs computational fluid dynamics (CFD) to explore the complexities of scaling film cooling performance measurements from ambient laboratory conditions to high temperature engine conditions. In this investigation, a single shaped hole is examined computationally at both engine and near ambient temperatures to understand the impact of temperature dependent properties on scaling film cooling performance. By varying select flow and thermal parameters for the low temperature cases and comparing the results to high temperature flow, the parameters which must be matched to scale film cooling performance are determined. The results show that only matching the density and mass flux ratios is insufficient for scaling to high temperatures. In accordance with convective heat transfer fundamentals, freestream and coolant Reynolds numbers and Prandtl numbers must also be matched to obtain scalable results. By virtue of the Prandtl number for air remaining nearly constant with temperature, the Prandtl number at ambient conditions is sufficiently matched to engine temperatures. However, laboratory limitations can prevent matching both the freestream and coolant Reynolds numbers simultaneously. By examining this tradeoff, it is determined that matching the coolant Reynolds number produces the best scalability. It is also found that by averaging the adiabatic effectiveness of two experiments in which the freestream and coolant Reynolds number are matched, respectively, results in significantly better scalability for cases with a separated coolant jet.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleScaling of Film Cooling Performance From Ambient to Engine Temperatures
    typeJournal Paper
    journal volume137
    journal issue7
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4029197
    journal fristpage71007
    journal lastpage71007
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2015:;volume( 137 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian