YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Three Dimensional Computational Study of Pulsating Flow Inside a Double Entry Turbine

    Source: Journal of Turbomachinery:;2015:;volume( 137 ):;issue: 003::page 31001
    Author:
    Newton, Peter
    ,
    Martinez
    ,
    Seiler, Martin
    DOI: 10.1115/1.4028217
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The double entry turbine contains two different gas entries, each feeding 180 deg of a single rotor wheel. This geometry can be beneficial for use in turbocharging and is uniquely found in this application. The nature of the turbocharging process means that the double entry turbine will be fed by a highly pulsating flow from the exhaust of an internal combustion engine, most often with outofphase pulsations in each of the two entries. Until now research on the double entry turbine under pulsating flow conditions has been limited to experimental work. Although this is of great value in showing how pulsating flow will affect the performance of the double entry turbine, the level of detail with which this can be studied is limited. This paper is the first to use a threedimensional computational analysis to study the flow structures within a double entry turbine under conditions of pulsating flow. The analysis looks at one condition of pulsating flow with outofphase pulsations. The computational results are validated against experimental data taken from the turbocharger test facility at Imperial College and a good agreement is found. The analysis first looks at the degree of mass flow storage within different components of the turbine and discusses the effect on the performance of the turbine. Each of the volute limbs is found to be subject to a large degree of mass storage throughout a pulse cycle demonstrating a definite impact of the unsteady flow. The rotor wheel shows a much smaller degree of mass flow storage overall due to the pulsating flow; however, each rotor passage is subject to a much larger degree of mass flow storage due to the instantaneous flow inequality between the two volute inlets. This is a direct consequence of the double entry geometry. The following part of the analysis studies the loss profile within the turbine under pulsating flow using the concept of entropy generation rate. A significant change in the loss profile of the turbine is found throughout the period of a pulse cycle showing a highly changing flow regime. The major areas of loss are found to be due to tip leakage flow and mixing within the blade passage.
    • Download: (2.533Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Three Dimensional Computational Study of Pulsating Flow Inside a Double Entry Turbine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/159888
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorNewton, Peter
    contributor authorMartinez
    contributor authorSeiler, Martin
    date accessioned2017-05-09T01:24:24Z
    date available2017-05-09T01:24:24Z
    date issued2015
    identifier issn0889-504X
    identifier otherturbo_137_03_031001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/159888
    description abstractThe double entry turbine contains two different gas entries, each feeding 180 deg of a single rotor wheel. This geometry can be beneficial for use in turbocharging and is uniquely found in this application. The nature of the turbocharging process means that the double entry turbine will be fed by a highly pulsating flow from the exhaust of an internal combustion engine, most often with outofphase pulsations in each of the two entries. Until now research on the double entry turbine under pulsating flow conditions has been limited to experimental work. Although this is of great value in showing how pulsating flow will affect the performance of the double entry turbine, the level of detail with which this can be studied is limited. This paper is the first to use a threedimensional computational analysis to study the flow structures within a double entry turbine under conditions of pulsating flow. The analysis looks at one condition of pulsating flow with outofphase pulsations. The computational results are validated against experimental data taken from the turbocharger test facility at Imperial College and a good agreement is found. The analysis first looks at the degree of mass flow storage within different components of the turbine and discusses the effect on the performance of the turbine. Each of the volute limbs is found to be subject to a large degree of mass storage throughout a pulse cycle demonstrating a definite impact of the unsteady flow. The rotor wheel shows a much smaller degree of mass flow storage overall due to the pulsating flow; however, each rotor passage is subject to a much larger degree of mass flow storage due to the instantaneous flow inequality between the two volute inlets. This is a direct consequence of the double entry geometry. The following part of the analysis studies the loss profile within the turbine under pulsating flow using the concept of entropy generation rate. A significant change in the loss profile of the turbine is found throughout the period of a pulse cycle showing a highly changing flow regime. The major areas of loss are found to be due to tip leakage flow and mixing within the blade passage.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Three Dimensional Computational Study of Pulsating Flow Inside a Double Entry Turbine
    typeJournal Paper
    journal volume137
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4028217
    journal fristpage31001
    journal lastpage31001
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2015:;volume( 137 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian