YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Estimation of Stress Corrosion Cracking Growth Behavior Under Weld Residual Stress in the Bottom of a Reactor Pressure Vessel by Finite Element Analysis

    Source: Journal of Pressure Vessel Technology:;2015:;volume( 137 ):;issue: 004::page 41402
    Author:
    Iwamatsu, Fuminori
    ,
    Miyazaki, Katsumasa
    ,
    Mochizuki, Masahito
    DOI: 10.1115/1.4029256
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A method for evaluating crack growth by repeatedly modeling and analyzing the transitional crack shapes is developed for a general computing environment in which a commercial finite element preprocessor and analysis code are used. The proposed method calculates stress intensity factors (SIFs) by finite element analysis (FEA) by directly distributing estimated weld residual stress obtained from noncracked components on the crack surface on the basis of the superposition principle. In present case, to specify a nonuniform residual stress distribution, a subroutine for a commercial FEA code (ABAQUS) was developed. Arbitrary crack shapes during the crack propagation were expressed by applying the submodeling technique which allowed arbitrary crack shapes to be meshed. The sequence of steps in the proposed method was designed to make it possible to consider complicated stress distributions, such as weld residual stress, and to express arbitrary crack shapes. The applicability of the proposed FEA based method was verified by comparing the result of a stress corrosion cracking (SCC) growth analysis results of a flat plate obtained with the proposed method and with the ASME code procedure. As an application example, the SCC growth behavior of a crack at the bottom of a nuclear reactor pressure vessel (RPV) involving a dissimilar metal weld and a unique geometry was evaluated by the proposed method. The evaluation results were compared with results obtained using a conventional method, i.e., the influence function method (IFM). Since both sets of results were in reasonable agreement, it was concluded that IFM can be applied to this case. Previously, it was difficult to assess the applicability of conventional methods, such as the code procedure and IFM, to a complicated problem because of the existence of complicated residual stress fields, dissimilar metals, and the complicated crack shapes involved. The proposed method using FEA allows the applicability of conventional methods to complicated crack growth evaluations to be assessed.
    • Download: (1.771Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Estimation of Stress Corrosion Cracking Growth Behavior Under Weld Residual Stress in the Bottom of a Reactor Pressure Vessel by Finite Element Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/159491
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorIwamatsu, Fuminori
    contributor authorMiyazaki, Katsumasa
    contributor authorMochizuki, Masahito
    date accessioned2017-05-09T01:23:07Z
    date available2017-05-09T01:23:07Z
    date issued2015
    identifier issn0094-9930
    identifier otherpvt_137_04_041402.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/159491
    description abstractA method for evaluating crack growth by repeatedly modeling and analyzing the transitional crack shapes is developed for a general computing environment in which a commercial finite element preprocessor and analysis code are used. The proposed method calculates stress intensity factors (SIFs) by finite element analysis (FEA) by directly distributing estimated weld residual stress obtained from noncracked components on the crack surface on the basis of the superposition principle. In present case, to specify a nonuniform residual stress distribution, a subroutine for a commercial FEA code (ABAQUS) was developed. Arbitrary crack shapes during the crack propagation were expressed by applying the submodeling technique which allowed arbitrary crack shapes to be meshed. The sequence of steps in the proposed method was designed to make it possible to consider complicated stress distributions, such as weld residual stress, and to express arbitrary crack shapes. The applicability of the proposed FEA based method was verified by comparing the result of a stress corrosion cracking (SCC) growth analysis results of a flat plate obtained with the proposed method and with the ASME code procedure. As an application example, the SCC growth behavior of a crack at the bottom of a nuclear reactor pressure vessel (RPV) involving a dissimilar metal weld and a unique geometry was evaluated by the proposed method. The evaluation results were compared with results obtained using a conventional method, i.e., the influence function method (IFM). Since both sets of results were in reasonable agreement, it was concluded that IFM can be applied to this case. Previously, it was difficult to assess the applicability of conventional methods, such as the code procedure and IFM, to a complicated problem because of the existence of complicated residual stress fields, dissimilar metals, and the complicated crack shapes involved. The proposed method using FEA allows the applicability of conventional methods to complicated crack growth evaluations to be assessed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEstimation of Stress Corrosion Cracking Growth Behavior Under Weld Residual Stress in the Bottom of a Reactor Pressure Vessel by Finite Element Analysis
    typeJournal Paper
    journal volume137
    journal issue4
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4029256
    journal fristpage41402
    journal lastpage41402
    identifier eissn1528-8978
    treeJournal of Pressure Vessel Technology:;2015:;volume( 137 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian