YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Artificial Neural Network Model to Predict Material Characteristics From the Results of Miniature Disk Bending Tests

    Source: Journal of Pressure Vessel Technology:;2015:;volume( 137 ):;issue: 001::page 11404
    Author:
    Ghosh, A. K.
    ,
    Verma, Vishnu
    ,
    Behera, G.
    DOI: 10.1115/1.4027320
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The inverse problem of evaluating mechanical properties of material from the observed values of load and deflection of a miniature disk bending specimen is discussed in this paper. It involves analysis of large amplitude, elastoplastic deformation considering contact and friction. The approach in this work is to first generate—by a finite element (FE) solution—a large database of loaddisplacement (Pw) records for varying material properties. An artificial neural network (ANN) is trained with some of these data. The errors in the various values of the parameters during testing with additional known data were found to be reasonably small.
    • Download: (1005.Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Artificial Neural Network Model to Predict Material Characteristics From the Results of Miniature Disk Bending Tests

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/159431
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorGhosh, A. K.
    contributor authorVerma, Vishnu
    contributor authorBehera, G.
    date accessioned2017-05-09T01:22:55Z
    date available2017-05-09T01:22:55Z
    date issued2015
    identifier issn0094-9930
    identifier otherpvt_137_01_011404.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/159431
    description abstractThe inverse problem of evaluating mechanical properties of material from the observed values of load and deflection of a miniature disk bending specimen is discussed in this paper. It involves analysis of large amplitude, elastoplastic deformation considering contact and friction. The approach in this work is to first generate—by a finite element (FE) solution—a large database of loaddisplacement (Pw) records for varying material properties. An artificial neural network (ANN) is trained with some of these data. The errors in the various values of the parameters during testing with additional known data were found to be reasonably small.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Artificial Neural Network Model to Predict Material Characteristics From the Results of Miniature Disk Bending Tests
    typeJournal Paper
    journal volume137
    journal issue1
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4027320
    journal fristpage11404
    journal lastpage11404
    identifier eissn1528-8978
    treeJournal of Pressure Vessel Technology:;2015:;volume( 137 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian