YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Analytical Modeling and Characteristic Analysis of a Class of Compound Multibeam Parallelogram Mechanisms

    Source: Journal of Mechanisms and Robotics:;2015:;volume( 007 ):;issue: 004::page 41016
    Author:
    Hao, Guangbo
    ,
    Li, Haiyang
    DOI: 10.1115/1.4029556
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper deals with nonlinear analytical models of a class of compound multibeam parallelogram mechanisms (CMPMs) along with the static characteristic analysis. The CMPM is composed of multiple compound basic parallelogram mechanisms (CBPMs) in an embedded parallel arrangement. First, nonlinear analytical models for the CBPM are derived using the freebody diagram method through appropriate approximation strategies. The nonlinear analytical models of the CMPM are then derived based on the modeling results of the CBPM. Nonlinear finite element analysis (FEA) comparisons, experimental testing, and detailed stiffness analysis for the CBPM are finally carried out. It is shown that the analytical primary motion model agrees with both the FEA model and the testing result very well but the analytical parasitic motion model deviates from the FEA model over the large primary motion/force. It is also shown from the analytical characteristic analysis that the primary translational stiffness increases with the primary motion but the parasitic motion stiffness decreases with the primary motion, and the stiffness ratio of the parasitic motion stiffness to the primary translation stiffness also decreases with the primary motion. It is found that the larger the beam slenderness ratio is, the larger the stiffness or stiffness ratio is, and the more apparent the change of the stiffness or stiffness ratio is. The varied stiffness ratio indicates the mobility change of the CBPM.
    • Download: (2.956Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Analytical Modeling and Characteristic Analysis of a Class of Compound Multibeam Parallelogram Mechanisms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/159014
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorHao, Guangbo
    contributor authorLi, Haiyang
    date accessioned2017-05-09T01:21:30Z
    date available2017-05-09T01:21:30Z
    date issued2015
    identifier issn1942-4302
    identifier otherjmr_007_04_041016.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/159014
    description abstractThis paper deals with nonlinear analytical models of a class of compound multibeam parallelogram mechanisms (CMPMs) along with the static characteristic analysis. The CMPM is composed of multiple compound basic parallelogram mechanisms (CBPMs) in an embedded parallel arrangement. First, nonlinear analytical models for the CBPM are derived using the freebody diagram method through appropriate approximation strategies. The nonlinear analytical models of the CMPM are then derived based on the modeling results of the CBPM. Nonlinear finite element analysis (FEA) comparisons, experimental testing, and detailed stiffness analysis for the CBPM are finally carried out. It is shown that the analytical primary motion model agrees with both the FEA model and the testing result very well but the analytical parasitic motion model deviates from the FEA model over the large primary motion/force. It is also shown from the analytical characteristic analysis that the primary translational stiffness increases with the primary motion but the parasitic motion stiffness decreases with the primary motion, and the stiffness ratio of the parasitic motion stiffness to the primary translation stiffness also decreases with the primary motion. It is found that the larger the beam slenderness ratio is, the larger the stiffness or stiffness ratio is, and the more apparent the change of the stiffness or stiffness ratio is. The varied stiffness ratio indicates the mobility change of the CBPM.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNonlinear Analytical Modeling and Characteristic Analysis of a Class of Compound Multibeam Parallelogram Mechanisms
    typeJournal Paper
    journal volume7
    journal issue4
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4029556
    journal fristpage41016
    journal lastpage41016
    identifier eissn1942-4310
    treeJournal of Mechanisms and Robotics:;2015:;volume( 007 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian