YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Statistical Surrogate Formulations for Simulation Based Design Optimization

    Source: Journal of Mechanical Design:;2015:;volume( 137 ):;issue: 002::page 21405
    Author:
    Talgorn, Bastien
    ,
    Le Digabel, Sأ©bastien
    ,
    Kokkolaras, Michael
    DOI: 10.1115/1.4028756
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Typical challenges of simulationbased design optimization include unavailable gradients and unreliable approximations thereof, expensive function evaluations, numerical noise, multiple local optima, and the failure of the analysis to return a value to the optimizer. One possible remedy to alleviate these issues is to use surrogate models in lieu of the computational models or simulations and derivativefree optimization algorithms. In this work, we use the R dynaTree package to build statistical surrogates of the blackboxes and the direct search method for derivativefree optimization. We present different formulations for the surrogate problem (SP) considered at each search step of the mesh adaptive direct search (MADS) algorithm using a surrogate management framework. The proposed formulations are tested on 20 analytical benchmark problems and two simulationbased multidisciplinary design optimization (MDO) problems. Numerical results confirm that the use of statistical surrogates in MADS improves the efficiency of the optimization algorithm.
    • Download: (2.306Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Statistical Surrogate Formulations for Simulation Based Design Optimization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/158782
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorTalgorn, Bastien
    contributor authorLe Digabel, Sأ©bastien
    contributor authorKokkolaras, Michael
    date accessioned2017-05-09T01:20:46Z
    date available2017-05-09T01:20:46Z
    date issued2015
    identifier issn1050-0472
    identifier othermd_137_02_021405.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/158782
    description abstractTypical challenges of simulationbased design optimization include unavailable gradients and unreliable approximations thereof, expensive function evaluations, numerical noise, multiple local optima, and the failure of the analysis to return a value to the optimizer. One possible remedy to alleviate these issues is to use surrogate models in lieu of the computational models or simulations and derivativefree optimization algorithms. In this work, we use the R dynaTree package to build statistical surrogates of the blackboxes and the direct search method for derivativefree optimization. We present different formulations for the surrogate problem (SP) considered at each search step of the mesh adaptive direct search (MADS) algorithm using a surrogate management framework. The proposed formulations are tested on 20 analytical benchmark problems and two simulationbased multidisciplinary design optimization (MDO) problems. Numerical results confirm that the use of statistical surrogates in MADS improves the efficiency of the optimization algorithm.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStatistical Surrogate Formulations for Simulation Based Design Optimization
    typeJournal Paper
    journal volume137
    journal issue2
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4028756
    journal fristpage21405
    journal lastpage21405
    identifier eissn1528-9001
    treeJournal of Mechanical Design:;2015:;volume( 137 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian