YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cylindrical Thermal Cloak Based on the Path Design of Heat Flux

    Source: Journal of Heat Transfer:;2015:;volume( 137 ):;issue: 002::page 21301
    Author:
    Wu, Linzhi
    DOI: 10.1115/1.4028920
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: When heat flux flows in a given medium, its path will solely be determined. This implies that material parameters determined by the predesigned path of heat flux will guide heat to flow along the designed path. Based on this idea, we develop a new method for the design of the cylindrical thermal cloak which can make heat flux detour the cloaked object. For the inhomogeneous anisotropic medium, we derive the relation between the path trajectory of heat flux and material parameters and obtain two differential equations and one boundary condition which are used to determine material parameters in the cylindrical cloak. The transient behavior on the flow of heat flux is simulated by Comsol Multiphysics and the transient thermal protection of the cylindrical cloak for the cloaked object is examined. The effect of the product of density and specific heat on the dynamic diffusion process of heat flux is analyzed. Since one can flexibly design the path of heat flux in the cloak, it has the large degree of freedom to construct thermal cloaks with the specific distributions of material parameters. The present method provides a new blue print for the transient thermal protection of a specific target.
    • Download: (2.967Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cylindrical Thermal Cloak Based on the Path Design of Heat Flux

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/158428
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorWu, Linzhi
    date accessioned2017-05-09T01:19:33Z
    date available2017-05-09T01:19:33Z
    date issued2015
    identifier issn0022-1481
    identifier otherht_137_02_021301.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/158428
    description abstractWhen heat flux flows in a given medium, its path will solely be determined. This implies that material parameters determined by the predesigned path of heat flux will guide heat to flow along the designed path. Based on this idea, we develop a new method for the design of the cylindrical thermal cloak which can make heat flux detour the cloaked object. For the inhomogeneous anisotropic medium, we derive the relation between the path trajectory of heat flux and material parameters and obtain two differential equations and one boundary condition which are used to determine material parameters in the cylindrical cloak. The transient behavior on the flow of heat flux is simulated by Comsol Multiphysics and the transient thermal protection of the cylindrical cloak for the cloaked object is examined. The effect of the product of density and specific heat on the dynamic diffusion process of heat flux is analyzed. Since one can flexibly design the path of heat flux in the cloak, it has the large degree of freedom to construct thermal cloaks with the specific distributions of material parameters. The present method provides a new blue print for the transient thermal protection of a specific target.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCylindrical Thermal Cloak Based on the Path Design of Heat Flux
    typeJournal Paper
    journal volume137
    journal issue2
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4028920
    journal fristpage21301
    journal lastpage21301
    identifier eissn1528-8943
    treeJournal of Heat Transfer:;2015:;volume( 137 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian