Channel Dimensional Error Effect of Stamped Bipolar Plates on the Characteristics of Gas Diffusion Layer Contact Pressure for Proton Exchange Membrane Fuel Cell StacksSource: Journal of Fuel Cell Science and Technology:;2015:;volume( 012 ):;issue: 004::page 41002DOI: 10.1115/1.4030513Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Thin metallic bipolar plates (BPPs) fabricated by stamping technology are regarded as promising alternatives to traditional graphite BPPs in proton exchange membrane (PEM) fuel cell. However, during the stamping process, dimensional error in terms of the variation in channel height is inevitable, which results in performance loss for PEM fuel cell stack. The objective of this study is to investigate the effect of dimensional error on gas diffusion layer (GDL) pressure characteristics in the multicell stacks. At first, parameterized finite element (FE) model of metallic BPP/GDL assembly is established, and the height of channels is considered as varying parameters of linear distribution according to measurements of actual BPPs. Evaluation methods of GDL contact pressure are developed by considering the pressure distribution in the inplane and throughplane directions. Then, simulation of the assembly process for a series of multicell stacks is performed to explore the relation between dimensional error and contact pressure based on the evaluation methods. Influences of channel number, cell number, and clamping force on the constitutive relation are discussed. At last, experiments are conducted and pressure sensitive films are used to obtain the actual GDL contact pressure. The numerical results show the same trend as experimental results. This study illustrates that contact pressure of each cell layer is in severely uneven distribution for the inplane direction, and pressure change is unavoidable for the throughplane direction in the multicell stack, especially for the first several cells close to the endplate. The methodology developed is beneficial to the understanding of the dimensional error effect, and it can also be applied to guide the assembling of PEM fuel cell stack.
|
Collections
Show full item record
contributor author | Qiu, Diankai | |
contributor author | Yi, Peiyun | |
contributor author | Peng, Linfa | |
contributor author | Lai, Xinmin | |
date accessioned | 2017-05-09T01:19:24Z | |
date available | 2017-05-09T01:19:24Z | |
date issued | 2015 | |
identifier issn | 2381-6872 | |
identifier other | fc_012_04_041002.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/158388 | |
description abstract | Thin metallic bipolar plates (BPPs) fabricated by stamping technology are regarded as promising alternatives to traditional graphite BPPs in proton exchange membrane (PEM) fuel cell. However, during the stamping process, dimensional error in terms of the variation in channel height is inevitable, which results in performance loss for PEM fuel cell stack. The objective of this study is to investigate the effect of dimensional error on gas diffusion layer (GDL) pressure characteristics in the multicell stacks. At first, parameterized finite element (FE) model of metallic BPP/GDL assembly is established, and the height of channels is considered as varying parameters of linear distribution according to measurements of actual BPPs. Evaluation methods of GDL contact pressure are developed by considering the pressure distribution in the inplane and throughplane directions. Then, simulation of the assembly process for a series of multicell stacks is performed to explore the relation between dimensional error and contact pressure based on the evaluation methods. Influences of channel number, cell number, and clamping force on the constitutive relation are discussed. At last, experiments are conducted and pressure sensitive films are used to obtain the actual GDL contact pressure. The numerical results show the same trend as experimental results. This study illustrates that contact pressure of each cell layer is in severely uneven distribution for the inplane direction, and pressure change is unavoidable for the throughplane direction in the multicell stack, especially for the first several cells close to the endplate. The methodology developed is beneficial to the understanding of the dimensional error effect, and it can also be applied to guide the assembling of PEM fuel cell stack. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Channel Dimensional Error Effect of Stamped Bipolar Plates on the Characteristics of Gas Diffusion Layer Contact Pressure for Proton Exchange Membrane Fuel Cell Stacks | |
type | Journal Paper | |
journal volume | 12 | |
journal issue | 4 | |
journal title | Journal of Fuel Cell Science and Technology | |
identifier doi | 10.1115/1.4030513 | |
journal fristpage | 41002 | |
journal lastpage | 41002 | |
identifier eissn | 2381-6910 | |
tree | Journal of Fuel Cell Science and Technology:;2015:;volume( 012 ):;issue: 004 | |
contenttype | Fulltext |