YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fuel Cell Science and Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    High Efficiency SOFC Power Cycles With Indirect Natural Gas Reforming and CO2 Capture

    Source: Journal of Fuel Cell Science and Technology:;2015:;volume( 012 ):;issue: 002::page 21008
    Author:
    Campanari, Stefano
    ,
    Gazzani, Matteo
    DOI: 10.1115/1.4029425
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Driven by the search for the highest theoretical efficiency, several studies have investigated in the last years the adoption of fuel cells (FCs) in the field of power production from natural gas with CO2 capture. Most of the proposed power cycles rely on high temperature FCs, namely, solid oxide FCs (SOFCs) and molten carbonate FCs (MCFCs), based on the concept of hybrid FC plus gas turbine cycles. Accordingly, high temperature FCs are integrated with a simple or modified Brayton cycle. As far as SOFCs are concerned, CO2 can be separated downstream the FC via a range of available technologies, e.g., chemical or physical separation processes, oxycombustion, and cryogenic methods. Following a literature review on promising plant configurations, this work investigates the potential of adopting an external natural gas conversion section with respect to the plant efficiency. As a reference plant, we considered a power cycle proposed by Adams and Barton (2010, “HighEfficiency Power Production From Natural Gas With Carbon Capture,â€‌ J. Power Sources, 195(7), pp. 1971–1983), whose performance is the highest found in literature for SOFCbased power cycles, with 82% LHV electrical efficiency. It is based on a prereforming concept where fuel is reformed ahead the SOFC, which thus works with a high hydrogen content fuel. After reproducing the power cycle with the ideal assumptions proposed by the original authors, as second step, the simulations were focused on revising the power cycle, implementing a complete set of assumptions about component losses and more conservative operating conditions about FC voltage, heat exchangers minimum temperature differences (which were previously neglected), maximum steam temperature (set according to heat recovery steam generator (HRSG) practice), turbomachinery efficiency, component pressure losses, and other adjustments. The simulation also required to design an appropriate heat exchangers network, which turned out to be very complex, instead of relying on the free allocation of heat transfer among all components. Considering the consequent modifications with respect to the original layout, the net electric efficiency changes to around 63% LHV with nearly complete (95%+) CO2 capture, a still remarkable but less attractive value. On the other hand, the power cycle requires a complicated and demanding heat exchangers network and heavily relies on the SOFC performances, not generating a positive power output from the gas turbine loop. Detailed results are presented in terms of energy and material balances of the proposed cycles. All simulations have been carried out with the proprietary code GS, developed by the GECOS group at Politecnico di Milano.
    • Download: (1.591Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      High Efficiency SOFC Power Cycles With Indirect Natural Gas Reforming and CO2 Capture

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/158374
    Collections
    • Journal of Fuel Cell Science and Technology

    Show full item record

    contributor authorCampanari, Stefano
    contributor authorGazzani, Matteo
    date accessioned2017-05-09T01:19:22Z
    date available2017-05-09T01:19:22Z
    date issued2015
    identifier issn2381-6872
    identifier otherfc_012_02_021008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/158374
    description abstractDriven by the search for the highest theoretical efficiency, several studies have investigated in the last years the adoption of fuel cells (FCs) in the field of power production from natural gas with CO2 capture. Most of the proposed power cycles rely on high temperature FCs, namely, solid oxide FCs (SOFCs) and molten carbonate FCs (MCFCs), based on the concept of hybrid FC plus gas turbine cycles. Accordingly, high temperature FCs are integrated with a simple or modified Brayton cycle. As far as SOFCs are concerned, CO2 can be separated downstream the FC via a range of available technologies, e.g., chemical or physical separation processes, oxycombustion, and cryogenic methods. Following a literature review on promising plant configurations, this work investigates the potential of adopting an external natural gas conversion section with respect to the plant efficiency. As a reference plant, we considered a power cycle proposed by Adams and Barton (2010, “HighEfficiency Power Production From Natural Gas With Carbon Capture,â€‌ J. Power Sources, 195(7), pp. 1971–1983), whose performance is the highest found in literature for SOFCbased power cycles, with 82% LHV electrical efficiency. It is based on a prereforming concept where fuel is reformed ahead the SOFC, which thus works with a high hydrogen content fuel. After reproducing the power cycle with the ideal assumptions proposed by the original authors, as second step, the simulations were focused on revising the power cycle, implementing a complete set of assumptions about component losses and more conservative operating conditions about FC voltage, heat exchangers minimum temperature differences (which were previously neglected), maximum steam temperature (set according to heat recovery steam generator (HRSG) practice), turbomachinery efficiency, component pressure losses, and other adjustments. The simulation also required to design an appropriate heat exchangers network, which turned out to be very complex, instead of relying on the free allocation of heat transfer among all components. Considering the consequent modifications with respect to the original layout, the net electric efficiency changes to around 63% LHV with nearly complete (95%+) CO2 capture, a still remarkable but less attractive value. On the other hand, the power cycle requires a complicated and demanding heat exchangers network and heavily relies on the SOFC performances, not generating a positive power output from the gas turbine loop. Detailed results are presented in terms of energy and material balances of the proposed cycles. All simulations have been carried out with the proprietary code GS, developed by the GECOS group at Politecnico di Milano.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHigh Efficiency SOFC Power Cycles With Indirect Natural Gas Reforming and CO2 Capture
    typeJournal Paper
    journal volume12
    journal issue2
    journal titleJournal of Fuel Cell Science and Technology
    identifier doi10.1115/1.4029425
    journal fristpage21008
    journal lastpage21008
    identifier eissn2381-6910
    treeJournal of Fuel Cell Science and Technology:;2015:;volume( 012 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian