contributor author | Farrokhpanah, Amirsaman | |
contributor author | Samareh, Babak | |
contributor author | Mostaghimi, Javad | |
date accessioned | 2017-05-09T01:18:54Z | |
date available | 2017-05-09T01:18:54Z | |
date issued | 2015 | |
identifier issn | 0098-2202 | |
identifier other | fe_137_04_041303.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/158237 | |
description abstract | Equilibrium contact angle of liquid drops over horizontal surfaces has been modeled using smoothed particle hydrodynamics (SPH). The model is capable of accurate implementation of contact angles to stationary and moving contact lines. In this scheme, the desired value for stationary or dynamic contact angle is used to correct the profile near the triple point. This is achieved by correcting the surface normals near the contact line and also interpolating the drop profile into the boundaries. Simulations show that a close match to the chosen contact angle values can be achieved for both stationary and moving contact lines. This technique has proven to reduce the amount of nonphysical shear stresses near the triple point and to enhance the convergence characteristics of the solver. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Applying Contact Angle to a Two Dimensional Multiphase Smoothed Particle Hydrodynamics Model | |
type | Journal Paper | |
journal volume | 137 | |
journal issue | 4 | |
journal title | Journal of Fluids Engineering | |
identifier doi | 10.1115/1.4028877 | |
journal fristpage | 41303 | |
journal lastpage | 41303 | |
identifier eissn | 1528-901X | |
tree | Journal of Fluids Engineering:;2015:;volume( 137 ):;issue: 004 | |
contenttype | Fulltext | |