| contributor author | Fang, Tao | |
| contributor author | Singh, Satbir | |
| date accessioned | 2017-05-09T01:18:21Z | |
| date available | 2017-05-09T01:18:21Z | |
| date issued | 2015 | |
| identifier issn | 1528-8919 | |
| identifier other | gtp_137_11_111512.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/158081 | |
| description abstract | Steadystate portflow simulations with static valve lift are often utilized to optimize the performance of intake system of an internal combustion engine. Generally, increase in valve lift results in higher mass flow rate through the valve. But in certain cases, mass flow rate can actually decrease with increased valve lift, caused by separation of turbulent flow at the valve seat. Prediction of this phenomenon using computational fluid dynamics (CFD) models is not trivial. It is found that the computational mesh significantly influences the simulation results. A series of steadystate portflow simulations are carried out using a commercial CFD code. Several mesh topologies are applied for the simulations. The predicted results are compared with available experimental data from flow bench measurements. It is found that the flow separation and reduction in mass flow rate with increased valve lift can be predicted when high mesh density is used in the proximity of the valve seat and the walls of the intake port. Higher mesh density also gives better predictions of mass flow rate compared to the experiments, but only for high valve lifts. For low valve lifts, the error in predicted flow rate is close to 13%. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Predictions of Flow Separation at the Valve Seat for Steady State Port Flow Simulation | |
| type | Journal Paper | |
| journal volume | 137 | |
| journal issue | 11 | |
| journal title | Journal of Engineering for Gas Turbines and Power | |
| identifier doi | 10.1115/1.4030501 | |
| journal fristpage | 111512 | |
| journal lastpage | 111512 | |
| identifier eissn | 0742-4795 | |
| tree | Journal of Engineering for Gas Turbines and Power:;2015:;volume( 137 ):;issue: 011 | |
| contenttype | Fulltext | |