Show simple item record

contributor authorDhopade, Priyanka
contributor authorNeely, Andrew J.
date accessioned2017-05-09T01:17:50Z
date available2017-05-09T01:17:50Z
date issued2015
identifier issn1528-8919
identifier othergtp_137_05_052505.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/157948
description abstractGas turbine engine components are subject to both lowcycle fatigue (LCF) and highcycle fatigue (HCF) loads. To improve engine reliability, durability and maintenance, it is necessary to understand the interaction of LCF and HCF in these components, which can adversely affect the overall life of the engine while they are occurring simultaneously during a flight cycle. A fully coupled aeromechanical fluid–structure interaction (FSI) analysis in conjunction with a fracture mechanics analysis was numerically performed to predict the effect of representative fluctuating loads on the fatigue life of blisk fan blades. This was achieved by comparing an isolated rotor (IR) to a rotor in the presence of upstream inlet guide vanes (IGVs). A fracture mechanics analysis was used to combine the HCF loading spectrum with an LCF loading spectrum from a simplified engine flight cycle in order to determine the extent of the fatigue life reduction due to the interaction of the HCF and LCF loads occurring simultaneously. The results demonstrate the reduced fatigue life of the blades predicted by a combined loading of HCF and LCF cycles from a crack growth analysis, as compared to the effect of the individual cycles. In addition, the HCF aerodynamic forcing from the IGVs excited a higher natural frequency of vibration of the rotor blade, which was shown to have a detrimental effect on the fatigue life. The findings suggest that FSI, blade–row interaction and HCF/LCF interaction are important considerations when predicting blade life at the design stage of the engine. The lack of available experimental data to validate this problem emphasizes the utility of a numerical approach to first examine the physics of the problem and second to help establish the need for these complex experiments.
publisherThe American Society of Mechanical Engineers (ASME)
titleAeromechanical Modeling of Rotating Fan Blades to Investigate High Cycle and Low Cycle Fatigue Interaction
typeJournal Paper
journal volume137
journal issue5
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.4028717
journal fristpage52505
journal lastpage52505
identifier eissn0742-4795
treeJournal of Engineering for Gas Turbines and Power:;2015:;volume( 137 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record