YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Diluents on Lifted Turbulent Methane and Ethylene Jet Flames

    Source: Journal of Energy Resources Technology:;2015:;volume( 137 ):;issue: 003::page 32204
    Author:
    Hutchins, Andrew R.
    ,
    Kribs, James D.
    ,
    Lyons, Kevin M.
    DOI: 10.1115/1.4028865
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The effects of diluents on the liftoff of turbulent, partially premixed methane and ethylene jet flames for potential impact in industrial burner operation for multifuel operation have been investigated. Both fuel jets were diluted with nitrogen and argon in separate experiments, and the flame liftoff heights were compared for a variety of flow conditions. Methane flames have been shown to liftoff at lower jet velocities and reach blowout conditions much more rapidly than ethylene flames. Diluting ethylene and methane jets with nitrogen and argon, independently, resulted in varying trends for each fuel. At low dilution levels (∼5% by mole fraction), methane flames were lifted to similar heights, regardless of the diluent type; however, at higher dilution levels (∼10% by mole fraction) the argon diluent produced a flame which stabilized farther downstream. Ethylene jet flames proved to vary less in liftoff heights with respect to diluent type. Significant soot reduction with dilution is witnessed for both ethylene and methane flames, in that flame luminosity alteration occurs at the flame base at increasing levels of argon and nitrogen dilution. The increasing dilution levels also decreased the liftoff velocity of the fuel. Analysis showed little variance among liftoff heights in ethylene flames for the various inert diluents, while methane flames proved to be more sensitive to diluent type. This sensitivity is attributed to the more narrow limits of flammability of methane in comparison to ethylene, as well as the much higher flame speed of ethylene flames.
    • Download: (946.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Diluents on Lifted Turbulent Methane and Ethylene Jet Flames

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/157765
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorHutchins, Andrew R.
    contributor authorKribs, James D.
    contributor authorLyons, Kevin M.
    date accessioned2017-05-09T01:17:13Z
    date available2017-05-09T01:17:13Z
    date issued2015
    identifier issn0195-0738
    identifier otherjert_137_03_032204.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/157765
    description abstractThe effects of diluents on the liftoff of turbulent, partially premixed methane and ethylene jet flames for potential impact in industrial burner operation for multifuel operation have been investigated. Both fuel jets were diluted with nitrogen and argon in separate experiments, and the flame liftoff heights were compared for a variety of flow conditions. Methane flames have been shown to liftoff at lower jet velocities and reach blowout conditions much more rapidly than ethylene flames. Diluting ethylene and methane jets with nitrogen and argon, independently, resulted in varying trends for each fuel. At low dilution levels (∼5% by mole fraction), methane flames were lifted to similar heights, regardless of the diluent type; however, at higher dilution levels (∼10% by mole fraction) the argon diluent produced a flame which stabilized farther downstream. Ethylene jet flames proved to vary less in liftoff heights with respect to diluent type. Significant soot reduction with dilution is witnessed for both ethylene and methane flames, in that flame luminosity alteration occurs at the flame base at increasing levels of argon and nitrogen dilution. The increasing dilution levels also decreased the liftoff velocity of the fuel. Analysis showed little variance among liftoff heights in ethylene flames for the various inert diluents, while methane flames proved to be more sensitive to diluent type. This sensitivity is attributed to the more narrow limits of flammability of methane in comparison to ethylene, as well as the much higher flame speed of ethylene flames.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffects of Diluents on Lifted Turbulent Methane and Ethylene Jet Flames
    typeJournal Paper
    journal volume137
    journal issue3
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4028865
    journal fristpage32204
    journal lastpage32204
    identifier eissn1528-8994
    treeJournal of Energy Resources Technology:;2015:;volume( 137 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian