YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comprehensive Hydromechanical Specific Energy Calculation for Drilling Efficiency

    Source: Journal of Energy Resources Technology:;2015:;volume( 137 ):;issue: 001::page 12904
    Author:
    Mohan, Kshitij
    ,
    Adil, Faraaz
    ,
    Samuel, Robello
    DOI: 10.1115/1.4028272
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Over the last few years, different types of bits have been introduced to meet the challenges of steerable as well as rotary steerable systems; and it is imperative that bits be utilized optimally in these systems. As challenges increase with increasing depths, it becomes even more important for one to efficiently utilize the available energy (Robello, S., 2013, “Modeling and Analysis of Drillstring Vibration in Riserless Environment,â€‌ ASME J. Energy Res. Technol., 135(1), p. 013101). A new correlation identifying inefficient drilling conditions is presented in this paper. Mechanical specific energy (MSE) has been used to improve drilling rates, with mixed results. Hydro MSE (HMSE), which is introduced here, encompasses hydraulic as well as mechanical energy. HMSE quantifies the amount of energy required to drill a unit volume of rock and remove it from underneath the bit. HMSE includes axial, torsional, and hydraulic energy and is different from MSE because it includes a hydraulic term. The initial MSE correlation (Teale, R., 1965, “The Concept of Specific Energy in Rock Drilling,â€‌ Int. J. Rock Mech. Min. Sci., 2, pp. 57–73.) was modified to accommodate the new hydraulic term. This paper attempts to better model downhole drilling by introducing the hydraulic energy term in the MSE correlation by defining it as HMSE. While the majority of the drilling occurs because of the bit, it is a wellknown fact that some drilling occurs due to the “jet impact impingementâ€‌ caused by the drilling fluid as well. Experimental and field data presented in this paper show that HMSE can identify inefficient drilling conditions. The new hydraulic term included in the specific energy correlation is the key to correctly match the amount of energy required to drill and overcome the strength and stresses of formation being drilled. Also, this new term illustrates how much hydraulic energy is needed to drill faster when the mechanical energy (axial and torsional) is increased. The results also show the importance of including the bit hydraulic energy term into any specific energy analysis for drilling optimization. Field results reveal specific patterns for inefficient drilling conditions and also reveal a good correlation between calculated HMSE and the expected requirements for rock removal under existent conditions of stress at the bit face (Mohan, K., and Robello Samuel, F. A., 2009, “Tracking Drilling Efficiency Using HydroMechanical Specific Energy,â€‌ SPE/IADC Drilling Conference and Exhibition, March 17–19, Amsterdam, The Netherlands, No. SPE 119421).
    • Download: (648.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comprehensive Hydromechanical Specific Energy Calculation for Drilling Efficiency

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/157733
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorMohan, Kshitij
    contributor authorAdil, Faraaz
    contributor authorSamuel, Robello
    date accessioned2017-05-09T01:17:09Z
    date available2017-05-09T01:17:09Z
    date issued2015
    identifier issn0195-0738
    identifier otherjert_137_01_012904.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/157733
    description abstractOver the last few years, different types of bits have been introduced to meet the challenges of steerable as well as rotary steerable systems; and it is imperative that bits be utilized optimally in these systems. As challenges increase with increasing depths, it becomes even more important for one to efficiently utilize the available energy (Robello, S., 2013, “Modeling and Analysis of Drillstring Vibration in Riserless Environment,â€‌ ASME J. Energy Res. Technol., 135(1), p. 013101). A new correlation identifying inefficient drilling conditions is presented in this paper. Mechanical specific energy (MSE) has been used to improve drilling rates, with mixed results. Hydro MSE (HMSE), which is introduced here, encompasses hydraulic as well as mechanical energy. HMSE quantifies the amount of energy required to drill a unit volume of rock and remove it from underneath the bit. HMSE includes axial, torsional, and hydraulic energy and is different from MSE because it includes a hydraulic term. The initial MSE correlation (Teale, R., 1965, “The Concept of Specific Energy in Rock Drilling,â€‌ Int. J. Rock Mech. Min. Sci., 2, pp. 57–73.) was modified to accommodate the new hydraulic term. This paper attempts to better model downhole drilling by introducing the hydraulic energy term in the MSE correlation by defining it as HMSE. While the majority of the drilling occurs because of the bit, it is a wellknown fact that some drilling occurs due to the “jet impact impingementâ€‌ caused by the drilling fluid as well. Experimental and field data presented in this paper show that HMSE can identify inefficient drilling conditions. The new hydraulic term included in the specific energy correlation is the key to correctly match the amount of energy required to drill and overcome the strength and stresses of formation being drilled. Also, this new term illustrates how much hydraulic energy is needed to drill faster when the mechanical energy (axial and torsional) is increased. The results also show the importance of including the bit hydraulic energy term into any specific energy analysis for drilling optimization. Field results reveal specific patterns for inefficient drilling conditions and also reveal a good correlation between calculated HMSE and the expected requirements for rock removal under existent conditions of stress at the bit face (Mohan, K., and Robello Samuel, F. A., 2009, “Tracking Drilling Efficiency Using HydroMechanical Specific Energy,â€‌ SPE/IADC Drilling Conference and Exhibition, March 17–19, Amsterdam, The Netherlands, No. SPE 119421).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComprehensive Hydromechanical Specific Energy Calculation for Drilling Efficiency
    typeJournal Paper
    journal volume137
    journal issue1
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4028272
    journal fristpage12904
    journal lastpage12904
    identifier eissn1528-8994
    treeJournal of Energy Resources Technology:;2015:;volume( 137 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian