contributor author | Liu, Yu | |
contributor author | Dick, Andrew J. | |
date accessioned | 2017-05-09T01:15:47Z | |
date available | 2017-05-09T01:15:47Z | |
date issued | 2015 | |
identifier issn | 1555-1415 | |
identifier other | cnd_010_05_051003.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/157314 | |
description abstract | In this paper, transient wave propagation in nonlinear onedimensional (1D) waveguides is studied. A complete nonlinear (CN) 1D model accounting for both axial and transverse displacements is developed and geometric and material nonlinearities are separately modeled. The alternating frequencytime finite element method (AFTFEM) is implemented for this complete 1D model. Numerical simulations are conducted and the response behaviors for axial and transverse motions are analyzed. Comparison of the responses for the geometrically nonlinear (GN) model with a corresponding linear model supports predictions made from the previous analytical studies that the geometric nonlinearity has limited influence on the response of transient transverse waves in the intermediate strain regime. On the contrary, strong nonlinear behavior appears in the response for the materially nonlinear (MN) models. Depending on the local nonlinear property of the material in the intermediate strain regime, the amplitude of the response can be significantly influenced and additional dispersion can be introduced into the response. An exploration of the interaction between the geometric nonlinearity and the material nonlinearity for a rod model in a large strain regime is also conducted and the responses are analyzed by using timefrequency analysis. The competing effect of the geometric nonlinearity and the material nonlinearity can result in a pseudolinear response in a strong nonlinear system for a given range of impact loading. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Numerical Analysis of Transient Wave Propagation in Nonlinear One Dimensional Waveguides by Using the Spectral Finite Element Method | |
type | Journal Paper | |
journal volume | 10 | |
journal issue | 5 | |
journal title | Journal of Computational and Nonlinear Dynamics | |
identifier doi | 10.1115/1.4028015 | |
journal fristpage | 51003 | |
journal lastpage | 51003 | |
identifier eissn | 1555-1423 | |
tree | Journal of Computational and Nonlinear Dynamics:;2015:;volume( 010 ):;issue: 005 | |
contenttype | Fulltext | |