YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parameter Estimation of the FitzHugh–Nagumo Neuron Model Using Integrals Over Finite Time Periods

    Source: Journal of Computational and Nonlinear Dynamics:;2015:;volume( 010 ):;issue: 002::page 21023
    Author:
    Concha, Antonio
    ,
    Garrido, Rubأ©n
    DOI: 10.1115/1.4028601
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper proposes two methodologies for estimating the parameters of the FitzHugh–Nagumo (FHN) neuron model. The identification procedures use only measurements of the membrane potential. The first technique is named the identification method based on integrals and wavelets (IMIW), which combines a parameterization based on integrals over finite time periods and a wavelet denoising technique for removing the measurement noise. The second technique, termed as the identification method based only on integrals (IMOI), does not use any wavelet denoising technique and attenuates the measurement noise by integrating the IMIW parameterization two times more over finite time periods. Both procedures use the least squares algorithm for estimating the FHN parameters. Integrating the FHN model over finite time periods allows eliminating the unmeasurable recovery variable of this model, thus obtaining a parameterization based on integrals of the measurable membrane potential variable. Unlike an identification technique recently published, the proposed methods do not rely on the time derivatives of the membrane potential and are not limited to continuously differentiable input current stimulus. Numerical simulations show that both the IMIW and IMOI have a good and a similar performance, however, the implementation of the latter is simpler than the implementation of the former.
    • Download: (465.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parameter Estimation of the FitzHugh–Nagumo Neuron Model Using Integrals Over Finite Time Periods

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/157271
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorConcha, Antonio
    contributor authorGarrido, Rubأ©n
    date accessioned2017-05-09T01:15:39Z
    date available2017-05-09T01:15:39Z
    date issued2015
    identifier issn1555-1415
    identifier othercnd_010_02_021023.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/157271
    description abstractThis paper proposes two methodologies for estimating the parameters of the FitzHugh–Nagumo (FHN) neuron model. The identification procedures use only measurements of the membrane potential. The first technique is named the identification method based on integrals and wavelets (IMIW), which combines a parameterization based on integrals over finite time periods and a wavelet denoising technique for removing the measurement noise. The second technique, termed as the identification method based only on integrals (IMOI), does not use any wavelet denoising technique and attenuates the measurement noise by integrating the IMIW parameterization two times more over finite time periods. Both procedures use the least squares algorithm for estimating the FHN parameters. Integrating the FHN model over finite time periods allows eliminating the unmeasurable recovery variable of this model, thus obtaining a parameterization based on integrals of the measurable membrane potential variable. Unlike an identification technique recently published, the proposed methods do not rely on the time derivatives of the membrane potential and are not limited to continuously differentiable input current stimulus. Numerical simulations show that both the IMIW and IMOI have a good and a similar performance, however, the implementation of the latter is simpler than the implementation of the former.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleParameter Estimation of the FitzHugh–Nagumo Neuron Model Using Integrals Over Finite Time Periods
    typeJournal Paper
    journal volume10
    journal issue2
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4028601
    journal fristpage21023
    journal lastpage21023
    identifier eissn1555-1423
    treeJournal of Computational and Nonlinear Dynamics:;2015:;volume( 010 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian