YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Finite Element Modeling of Blast Lung Injury in Sheep

    Source: Journal of Biomechanical Engineering:;2015:;volume( 137 ):;issue: 004::page 41002
    Author:
    Gibbons, Melissa M.
    ,
    Dang, Xinglai
    ,
    Adkins, Mark
    ,
    Powell, Brian
    ,
    Chan, Philemon
    DOI: 10.1115/1.4029181
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A detailed 3D finite element model (FEM) of the sheep thorax was developed to predict heterogeneous and volumetric lung injury due to blast. A shared node mesh of the sheep thorax was constructed from a computed tomography (CT) scan of a sheep cadaver, and while most material properties were taken from literature, an elastic–plastic material model was used for the ribs based on threepoint bending experiments performed on sheep rib specimens. Anesthetized sheep were blasted in an enclosure, and blast overpressure data were collected using the blast test device (BTD), while surface lung injury was quantified during necropsy. Matching blasts were simulated using the sheep thorax FEM. Surface lung injury in the FEM was matched to pathology reports by setting a threshold value of the scalar output termed the strain product (maximum value of the dot product of strain and strainrate vectors over all simulation time) in the surface elements. Volumetric lung injury was quantified by applying the threshold value to all elements in the model lungs, and a correlation was found between predicted volumetric injury and measured postblast lung weights. All predictions are made for the left and right lungs separately. This work represents a significant step toward the prediction of localized and heterogeneous blast lung injury, as well as volumetric injury, which was not recorded during field testing for sheep.
    • Download: (2.551Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Finite Element Modeling of Blast Lung Injury in Sheep

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/157096
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorGibbons, Melissa M.
    contributor authorDang, Xinglai
    contributor authorAdkins, Mark
    contributor authorPowell, Brian
    contributor authorChan, Philemon
    date accessioned2017-05-09T01:15:05Z
    date available2017-05-09T01:15:05Z
    date issued2015
    identifier issn0148-0731
    identifier otherbio_137_04_041002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/157096
    description abstractA detailed 3D finite element model (FEM) of the sheep thorax was developed to predict heterogeneous and volumetric lung injury due to blast. A shared node mesh of the sheep thorax was constructed from a computed tomography (CT) scan of a sheep cadaver, and while most material properties were taken from literature, an elastic–plastic material model was used for the ribs based on threepoint bending experiments performed on sheep rib specimens. Anesthetized sheep were blasted in an enclosure, and blast overpressure data were collected using the blast test device (BTD), while surface lung injury was quantified during necropsy. Matching blasts were simulated using the sheep thorax FEM. Surface lung injury in the FEM was matched to pathology reports by setting a threshold value of the scalar output termed the strain product (maximum value of the dot product of strain and strainrate vectors over all simulation time) in the surface elements. Volumetric lung injury was quantified by applying the threshold value to all elements in the model lungs, and a correlation was found between predicted volumetric injury and measured postblast lung weights. All predictions are made for the left and right lungs separately. This work represents a significant step toward the prediction of localized and heterogeneous blast lung injury, as well as volumetric injury, which was not recorded during field testing for sheep.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFinite Element Modeling of Blast Lung Injury in Sheep
    typeJournal Paper
    journal volume137
    journal issue4
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4029181
    journal fristpage41002
    journal lastpage41002
    identifier eissn1528-8951
    treeJournal of Biomechanical Engineering:;2015:;volume( 137 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian