| contributor author | Zhu, Shuang J. | |
| contributor author | Poon, Eric K. W. | |
| contributor author | Ooi, Andrew S. H. | |
| contributor author | Moore, Stephen | |
| date accessioned | 2017-05-09T01:15:02Z | |
| date available | 2017-05-09T01:15:02Z | |
| date issued | 2015 | |
| identifier issn | 0148-0731 | |
| identifier other | bio_137_03_031002.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/157080 | |
| description abstract | “Controlled particle release and targeting†is a technique using particle release score map (PRSM) and transient particle release score map (TPRSM) via backtracking to determine optimal drug injection locations for achieving an enhanced target efficiency (TE). This paper investigates the possibility of targeting desired locations through an idealized but complex threedimensional (3D) vascular tree geometry under realistic hemodynamic conditions by imposing a Poiseuille velocity profile and a Womersley velocity profile derived from cine phase contrast magnetic resonance imaging (MRI) data for steady and pulsatile simulations, respectively. The shear thinning nonNewtonian behavior of blood was accounted for by the Carreau–Yasuda model. Oneway coupled Eulerian–Lagrangian particle tracking method was used to record individual drug particle trajectories. Particle size and density showed negligible influence on the particle fates. With the proposed optimal release scoring algorithm, multiple optimal release locations were determined under steady flow conditions, whereas there was one unique optimal release location under pulsatile flow conditions. The initial in silico results appear promising, showing on average 66% TE in the pulsatile simulations, warranting further studies to improve the mathematical model and experimental validation. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Enhanced Targeted Drug Delivery Through Controlled Release in a Three Dimensional Vascular Tree | |
| type | Journal Paper | |
| journal volume | 137 | |
| journal issue | 3 | |
| journal title | Journal of Biomechanical Engineering | |
| identifier doi | 10.1115/1.4028965 | |
| journal fristpage | 31002 | |
| journal lastpage | 31002 | |
| identifier eissn | 1528-8951 | |
| tree | Journal of Biomechanical Engineering:;2015:;volume( 137 ):;issue: 003 | |
| contenttype | Fulltext | |