YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Fast Convergence Parameter for Monte Carlo–Neumann Solution of Linear Stochastic Systems

    Source: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering:;2015:;volume( 001 ):;issue: 002::page 21002
    Author:
    da Silva, Jr. ,Clأ،udio R. أپvila
    ,
    Beck, Andrأ© Teأ³filo
    DOI: 10.1115/1.4029741
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The Neumann series is a wellknown technique to aid the solution of uncertainty propagation problems. However, convergence of the Neumann series can be very slow, often making its use highly inefficient. In this article, a fast convergence parameter (خ») convergence parameter is introduced, which yields accurate and efficient Monte Carlo–Neumann (MCN) solutions of linear stochastic systems using firstorder Neumann expansions. The خ» convergence parameter is found as a solution to the distance minimization problem, for an approximation of the inverse of the system matrix using the Neumann series. The method presented herein is called Monte Carlo–Neumann with خ» convergence, or simply the MCN خ» method. The accuracy and efficiency of the MCN خ» method are demonstrated in application to stochastic beambending problems.
    • Download: (1.133Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Fast Convergence Parameter for Monte Carlo–Neumann Solution of Linear Stochastic Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/156866
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

    Show full item record

    contributor authorda Silva, Jr. ,Clأ،udio R. أپvila
    contributor authorBeck, Andrأ© Teأ³filo
    date accessioned2017-05-09T01:14:25Z
    date available2017-05-09T01:14:25Z
    date issued2015
    identifier issn2332-9017
    identifier otherRISK_1_2_021002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/156866
    description abstractThe Neumann series is a wellknown technique to aid the solution of uncertainty propagation problems. However, convergence of the Neumann series can be very slow, often making its use highly inefficient. In this article, a fast convergence parameter (خ») convergence parameter is introduced, which yields accurate and efficient Monte Carlo–Neumann (MCN) solutions of linear stochastic systems using firstorder Neumann expansions. The خ» convergence parameter is found as a solution to the distance minimization problem, for an approximation of the inverse of the system matrix using the Neumann series. The method presented herein is called Monte Carlo–Neumann with خ» convergence, or simply the MCN خ» method. The accuracy and efficiency of the MCN خ» method are demonstrated in application to stochastic beambending problems.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Fast Convergence Parameter for Monte Carlo–Neumann Solution of Linear Stochastic Systems
    typeJournal Paper
    journal volume1
    journal issue2
    journal titleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    identifier doi10.1115/1.4029741
    journal fristpage21002
    journal lastpage21002
    treeASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering:;2015:;volume( 001 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian