YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance Degradation Assessment for Bearing Based on Ensemble Empirical Mode Decomposition and Gaussian Mixture Model

    Source: Journal of Vibration and Acoustics:;2014:;volume( 136 ):;issue: 006::page 61006
    Author:
    Hong, Sheng
    ,
    Wang, Baoqing
    ,
    Li, Guoqi
    ,
    Hong, Qian
    DOI: 10.1115/1.4028321
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper proposes a novel performance degradation assessment method for bearing based on ensemble empirical mode decomposition (EEMD), and Gaussian mixture model (GMM). EEMD is applied to preprocess the nonstationary vibration signals and get the feature space. GMM is utilized to approximate the density distribution of the lowerdimensional feature space processed by principal component analysis (PCA). The confidence value (CV) is calculated based on the overlap between the distribution of the baseline feature space and that of the testing feature space to indicate the performance of the bearing. The experiment results demonstrate the effectiveness of the proposed method.
    • Download: (1.429Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance Degradation Assessment for Bearing Based on Ensemble Empirical Mode Decomposition and Gaussian Mixture Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/156823
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorHong, Sheng
    contributor authorWang, Baoqing
    contributor authorLi, Guoqi
    contributor authorHong, Qian
    date accessioned2017-05-09T01:14:17Z
    date available2017-05-09T01:14:17Z
    date issued2014
    identifier issn1048-9002
    identifier othervib_136_06_061006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/156823
    description abstractThis paper proposes a novel performance degradation assessment method for bearing based on ensemble empirical mode decomposition (EEMD), and Gaussian mixture model (GMM). EEMD is applied to preprocess the nonstationary vibration signals and get the feature space. GMM is utilized to approximate the density distribution of the lowerdimensional feature space processed by principal component analysis (PCA). The confidence value (CV) is calculated based on the overlap between the distribution of the baseline feature space and that of the testing feature space to indicate the performance of the bearing. The experiment results demonstrate the effectiveness of the proposed method.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePerformance Degradation Assessment for Bearing Based on Ensemble Empirical Mode Decomposition and Gaussian Mixture Model
    typeJournal Paper
    journal volume136
    journal issue6
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4028321
    journal fristpage61006
    journal lastpage61006
    identifier eissn1528-8927
    treeJournal of Vibration and Acoustics:;2014:;volume( 136 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian