YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Transmission of Engine Harmonics to Synchronizer Mechanisms in Dual Clutch Transmissions

    Source: Journal of Vibration and Acoustics:;2014:;volume( 136 ):;issue: 005::page 51009
    Author:
    Walker, Paul D.
    ,
    Zhang, Nong
    DOI: 10.1115/1.4028079
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Synchronizer mechanisms play an important role in the selection and engagement of gears in manual, automated manual, and dual clutch transmissions (DCTs). These mechanisms rely heavily on the balancing of torque loads in cone clutches, dog gears, and from losses in the gearbox to ensure repeatable and reliable actuation, with excessive wear on friction and contact surfaces, leading to degradation of actuation and potential mechanism failure. DCTs, in particular, provide a unique operating environment for synchronizers, most notably is its actuation with the engine still driving the wheels during normal driving conditions. Thus, the consideration of increased transmitted vibrations through the powertrain must be evaluated to study the impact of these vibrations on the synchronizer. To conduct this investigation, this paper develops a detailed multibody dynamic model of a typical automotive powertrain equipped with a DCT. This includes engine models with torque harmonics that capture the instantaneous torque variations from piston firing in the engine. As the main consideration of this paper is the influence of engine harmonics, the semidefinite powertrain model is simplified to a fixedfree system and the response of the synchronizer mechanism to harmonic torque inputs is analyzed. Parametric analysis of the system is conducted to analyze the influence of variables—including gear ratio, torsional damper, system damping, and engine configuration—on the dynamic response of the mechanism. Results demonstrate the influence of each of these variables on synchronizer dynamics in the steady state, with stiffness of torsional damper having the strongest influence on forced vibration. Additionally, results vary significantly between single and dual layshaft transmissions.
    • Download: (2.057Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Transmission of Engine Harmonics to Synchronizer Mechanisms in Dual Clutch Transmissions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/156815
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorWalker, Paul D.
    contributor authorZhang, Nong
    date accessioned2017-05-09T01:14:15Z
    date available2017-05-09T01:14:15Z
    date issued2014
    identifier issn1048-9002
    identifier othervib_136_05_051009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/156815
    description abstractSynchronizer mechanisms play an important role in the selection and engagement of gears in manual, automated manual, and dual clutch transmissions (DCTs). These mechanisms rely heavily on the balancing of torque loads in cone clutches, dog gears, and from losses in the gearbox to ensure repeatable and reliable actuation, with excessive wear on friction and contact surfaces, leading to degradation of actuation and potential mechanism failure. DCTs, in particular, provide a unique operating environment for synchronizers, most notably is its actuation with the engine still driving the wheels during normal driving conditions. Thus, the consideration of increased transmitted vibrations through the powertrain must be evaluated to study the impact of these vibrations on the synchronizer. To conduct this investigation, this paper develops a detailed multibody dynamic model of a typical automotive powertrain equipped with a DCT. This includes engine models with torque harmonics that capture the instantaneous torque variations from piston firing in the engine. As the main consideration of this paper is the influence of engine harmonics, the semidefinite powertrain model is simplified to a fixedfree system and the response of the synchronizer mechanism to harmonic torque inputs is analyzed. Parametric analysis of the system is conducted to analyze the influence of variables—including gear ratio, torsional damper, system damping, and engine configuration—on the dynamic response of the mechanism. Results demonstrate the influence of each of these variables on synchronizer dynamics in the steady state, with stiffness of torsional damper having the strongest influence on forced vibration. Additionally, results vary significantly between single and dual layshaft transmissions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTransmission of Engine Harmonics to Synchronizer Mechanisms in Dual Clutch Transmissions
    typeJournal Paper
    journal volume136
    journal issue5
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4028079
    journal fristpage51009
    journal lastpage51009
    identifier eissn1528-8927
    treeJournal of Vibration and Acoustics:;2014:;volume( 136 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian