YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of Time Delay Absorber to Suppress Vibration of a Dynamical System to Tuned Excitation

    Source: Journal of Vibration and Acoustics:;2014:;volume( 136 ):;issue: 004::page 41014
    Author:
    El
    ,
    El
    DOI: 10.1115/1.4027629
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this work, we present a comprehensive investigation of the time delay absorber effects on the control of a dynamical system represented by a cantilever beam subjected to tuned excitation forces. Cantilever beam is one of the most widely used system in too many engineering applications, such as mechanical and civil engineering. The main aim of this work is to control the vibration of the beam at simultaneous internal and combined resonance condition, as it is the worst resonance case. Control is conducted via time delay absorber to suppress chaotic vibrations. Time delays often appear in many control systems in the state, in the control input, or in the measurements. Time delay commonly exists in various engineering, biological, and economical systems because of the finite speed of the information processing. It is a source of performance degradation and instability. Multiple time scale perturbation method is applied to obtain a first order approximation for the nonlinear differential equations describing the system behavior. The different resonance cases are reported and studied numerically. The stability of the steadystate solution at the selected worst resonance case is investigated applying Runge–Kutta fourth order method and frequency response equations via Matlab 7.0 and Maple11. Time delay absorber is effective, but within a specified range of time delay. It is the critical factor in selecting such absorber. Time delay absorber is better than the ordinary one as from the effectiveness point of view. The effects of the different absorber parameters on the system behavior and stability are studied numerically. A comparison with the available published work showed a close agreement with some previously published work.
    • Download: (3.384Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of Time Delay Absorber to Suppress Vibration of a Dynamical System to Tuned Excitation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/156788
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorEl
    contributor authorEl
    date accessioned2017-05-09T01:14:11Z
    date available2017-05-09T01:14:11Z
    date issued2014
    identifier issn1048-9002
    identifier othervib_136_04_041014.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/156788
    description abstractIn this work, we present a comprehensive investigation of the time delay absorber effects on the control of a dynamical system represented by a cantilever beam subjected to tuned excitation forces. Cantilever beam is one of the most widely used system in too many engineering applications, such as mechanical and civil engineering. The main aim of this work is to control the vibration of the beam at simultaneous internal and combined resonance condition, as it is the worst resonance case. Control is conducted via time delay absorber to suppress chaotic vibrations. Time delays often appear in many control systems in the state, in the control input, or in the measurements. Time delay commonly exists in various engineering, biological, and economical systems because of the finite speed of the information processing. It is a source of performance degradation and instability. Multiple time scale perturbation method is applied to obtain a first order approximation for the nonlinear differential equations describing the system behavior. The different resonance cases are reported and studied numerically. The stability of the steadystate solution at the selected worst resonance case is investigated applying Runge–Kutta fourth order method and frequency response equations via Matlab 7.0 and Maple11. Time delay absorber is effective, but within a specified range of time delay. It is the critical factor in selecting such absorber. Time delay absorber is better than the ordinary one as from the effectiveness point of view. The effects of the different absorber parameters on the system behavior and stability are studied numerically. A comparison with the available published work showed a close agreement with some previously published work.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleApplication of Time Delay Absorber to Suppress Vibration of a Dynamical System to Tuned Excitation
    typeJournal Paper
    journal volume136
    journal issue4
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4027629
    journal fristpage41014
    journal lastpage41014
    identifier eissn1528-8927
    treeJournal of Vibration and Acoustics:;2014:;volume( 136 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian