YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimal Lumped Mass Matrices by Minimization of Modal Errors for Beam Elements

    Source: Journal of Vibration and Acoustics:;2014:;volume( 136 ):;issue: 002::page 21015
    Author:
    Zuo, Zhanxuan
    ,
    Li, Shuang
    ,
    Zhai, Changhai
    ,
    Xie, Lili
    DOI: 10.1115/1.4026247
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper clarifies the reason why error occurs in the mass lumping procedure and presents a new approach to construct lumped mass matrices for Euler–Bernoulli beam elements, which contain both translational and rotational degrees of freedom. Lumped mass matrices provide the proper translational inertia but change the rotational inertia compared with the continuous mass representation. Therefore, the optimal lumped mass matrices are expressed through the adoption of a variable rotational inertia parameter to counterbalance the decreased or increased rotational inertia. The goal of this study is to propose lumped mass matrices to minimize the modal error for beam elements. The accuracy of the new mass matrices is validated by a number of numerical tests.
    • Download: (469.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimal Lumped Mass Matrices by Minimization of Modal Errors for Beam Elements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/156730
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorZuo, Zhanxuan
    contributor authorLi, Shuang
    contributor authorZhai, Changhai
    contributor authorXie, Lili
    date accessioned2017-05-09T01:14:02Z
    date available2017-05-09T01:14:02Z
    date issued2014
    identifier issn1048-9002
    identifier othervib_136_02_021015.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/156730
    description abstractThis paper clarifies the reason why error occurs in the mass lumping procedure and presents a new approach to construct lumped mass matrices for Euler–Bernoulli beam elements, which contain both translational and rotational degrees of freedom. Lumped mass matrices provide the proper translational inertia but change the rotational inertia compared with the continuous mass representation. Therefore, the optimal lumped mass matrices are expressed through the adoption of a variable rotational inertia parameter to counterbalance the decreased or increased rotational inertia. The goal of this study is to propose lumped mass matrices to minimize the modal error for beam elements. The accuracy of the new mass matrices is validated by a number of numerical tests.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOptimal Lumped Mass Matrices by Minimization of Modal Errors for Beam Elements
    typeJournal Paper
    journal volume136
    journal issue2
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4026247
    journal fristpage21015
    journal lastpage21015
    identifier eissn1528-8927
    treeJournal of Vibration and Acoustics:;2014:;volume( 136 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian