YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development of an Engine Representative Combustor Simulator Dedicated to Hot Streak Generation

    Source: Journal of Turbomachinery:;2014:;volume( 136 ):;issue: 011::page 111007
    Author:
    Koupper, Charlie
    ,
    Caciolli, Gianluca
    ,
    Gicquel, Laurent
    ,
    Duchaine, Florent
    ,
    Bonneau, Guillaume
    ,
    Tarchi, Lorenzo
    ,
    Facchini, Bruno
    DOI: 10.1115/1.4028175
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Nowadays, the lack of confidence in the prediction of combustorturbine interactions and more specifically our ability to predict the migration of hot spots through this interface leads to the application of extra safety margins, which are detrimental to an optimized turbine design and efficiency. To understand the physics and flow at this interface, a full 360 deg nonreactive combustor simulator (CS) representative of a recent lean burn chamber together with a 1.5 turbine stage is instrumented at DLR in Gottingen (Germany) within the European project FACTOR. The chamber operates with axial swirlers especially designed to reproduce enginerealistic velocity and temperature distortion profiles, allowing the investigation of the hot streaks transport through the high pressure (HP) stage. First, a true scale three injector annular sector of the CS without turbine is assembled and tested at the University of Florence. To generate the hot steaks, the swirlers are fed by an air flow at 531 K, while the liners are cooled by an effusion system fed with air at ambient temperature. In addition to static pressure taps and thermocouples, the test rig will be equipped with an automatic traverse system which allows detailed measurements at the combustor exit by means of a 5hole probe, a thermocouple, and hot wire anemometers. This paper presents the design process and instrumentation of the trisector CS, with a special focus on large Eddy simulations (LES) which were widely used to validate the design choices. It was indeed decided to take advantage of the ability and maturity of LES to properly capture turbulence and mixing within combustion chambers, despite an increased computational cost as compared to usual Reynolds averaged Navier Stokes (RANS) approaches. For preliminary design, simulations of a single periodic sector (representative of the DLR full annular rig) are compared to simulations of the trisector test rig, showing no difference on the central swirler predictions, comforting the choice for the trisector. In parallel, to allow hot wire anemometry (HWA) measurements, the selection of an isothermal operating point, representative of the nominal point, is assessed and validated by use of LES.
    • Download: (2.635Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development of an Engine Representative Combustor Simulator Dedicated to Hot Streak Generation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/156683
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorKoupper, Charlie
    contributor authorCaciolli, Gianluca
    contributor authorGicquel, Laurent
    contributor authorDuchaine, Florent
    contributor authorBonneau, Guillaume
    contributor authorTarchi, Lorenzo
    contributor authorFacchini, Bruno
    date accessioned2017-05-09T01:13:52Z
    date available2017-05-09T01:13:52Z
    date issued2014
    identifier issn0889-504X
    identifier otherturbo_136_11_111007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/156683
    description abstractNowadays, the lack of confidence in the prediction of combustorturbine interactions and more specifically our ability to predict the migration of hot spots through this interface leads to the application of extra safety margins, which are detrimental to an optimized turbine design and efficiency. To understand the physics and flow at this interface, a full 360 deg nonreactive combustor simulator (CS) representative of a recent lean burn chamber together with a 1.5 turbine stage is instrumented at DLR in Gottingen (Germany) within the European project FACTOR. The chamber operates with axial swirlers especially designed to reproduce enginerealistic velocity and temperature distortion profiles, allowing the investigation of the hot streaks transport through the high pressure (HP) stage. First, a true scale three injector annular sector of the CS without turbine is assembled and tested at the University of Florence. To generate the hot steaks, the swirlers are fed by an air flow at 531 K, while the liners are cooled by an effusion system fed with air at ambient temperature. In addition to static pressure taps and thermocouples, the test rig will be equipped with an automatic traverse system which allows detailed measurements at the combustor exit by means of a 5hole probe, a thermocouple, and hot wire anemometers. This paper presents the design process and instrumentation of the trisector CS, with a special focus on large Eddy simulations (LES) which were widely used to validate the design choices. It was indeed decided to take advantage of the ability and maturity of LES to properly capture turbulence and mixing within combustion chambers, despite an increased computational cost as compared to usual Reynolds averaged Navier Stokes (RANS) approaches. For preliminary design, simulations of a single periodic sector (representative of the DLR full annular rig) are compared to simulations of the trisector test rig, showing no difference on the central swirler predictions, comforting the choice for the trisector. In parallel, to allow hot wire anemometry (HWA) measurements, the selection of an isothermal operating point, representative of the nominal point, is assessed and validated by use of LES.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDevelopment of an Engine Representative Combustor Simulator Dedicated to Hot Streak Generation
    typeJournal Paper
    journal volume136
    journal issue11
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4028175
    journal fristpage111007
    journal lastpage111007
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2014:;volume( 136 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian